1. Field of the Invention
The present invention relates to a modular communications radio architecture.
2. Discussion of the Known Art
Wideband radios are used, among other places, in the military where there is a continuing need to improve the size, weight, power, and cost (SWAP+C) of such radios. For example, in a so-called GMR/Cluster 1 radio architecture, there is a need to reduce the size of various circuit boards and their power consumption while maintaining the intended functionality of the boards.
In the above architecture, a radio core engine (CE) module is comprised of a circuit card assembly (CCA) including a digital modem circuit board measuring 9 by 6.5 inches. The modem board supports a 440GX Power PC processor with 1300 MIPS, 128 MBytes of DDR memory and 64 MB of Flash, and a 600 MHZ DSP with 64 MB of memory. The CCA also includes three additional circuit boards over which a number of electronic devices and components are arrayed in order to perform radio frequency (RF) transceiver functions of the core engine. Each one of the RF circuit boards also measures 9 by 6.5 inches. Notwithstanding, there is a need for a CE module that can be readily adapted to operate with a variety of existing and new wideband military radio communications platforms, many of which have only a limited amount of space within which to contain the module hardware.
According to the invention, a compact communications radio core engine (CE) module, includes a modem circuit board having a first connector, and a radio frequency (RF) circuit board having a second connector configured to operatively engage the first connector of the modem circuit card. A module shell is constructed and arranged to contain the modem and the RF circuit boards is such an orientation so that the second connector of the RF circuit board is operatively engaged with the first connector of the modem circuit card.
For a better understanding of the invention, reference is made to the following description taken in conjunction with the accompanying drawing and the appended claims.
In the drawing:
The present invention relates to a compact radio core engine (CE) module having modem and RF circuit boards that are constructed and arranged so that the module can be adapted to a variety of military radio platforms including, for example, hand held, manpack, and vehicular platforms specified by the Joint Tactical Radio System (JTRS). Embodiments of the module are shown in
The OMAP 12 includes a DSP that runs at 800 MHZ to obtain an increase in overall increase of 60 percent compared to the prior architecture. An associated memory 14 within the OMAP ARM 3730 has a capacity of 512 Mbytes volatile DDR memory. Volatile memory in the prior architecture was limited to 128 Mbytes. The OMAP memory 14 also has a capacity of 512 Mbytes of non-volatile memory, whereas the prior architecture was limited to 64 Mbytes. Further, the OMAP 12 has an associated power management circuit chip 16 the location of which is also shown at the lower left in
The modem board 10 also features, e.g., a Cyclone IV FPGA 18 that is centrally mounted on the board as seen at the left in
A modem board-to-RF board connector 22 is mounted near a left side edge of the modem board 10, on a bottom surface of the board, as viewed at the right in
A power connector 24 and an I/O signal connector 26 are mounted near a top and a bottom edge of the modem board 10, on a top surface of the board, as viewed at the left in
The board 30 may support a transmit power amplifier (PA) 32 with a five watt RF power output capability. By contrast, the prior architecture allowed only 100 mw of RF power out. Further, a bank of electronically switched filters 34 are provided at the output of a second IF stage. The location of the filter bank 34 is shown at the right in
A RF circuit board-to-modem board connector 40 is mounted near a right side edge of the RF board 30, on the surface of the board 30 shown at the right in
In
As seen in
Further, as seen in
An opening 94 is formed in the interior wall 54 of the shell 52 so as to coincide with the modem board-to-RF board connector 22 on the modem board 10, and with the RF circuit board-to-modem board connector 40 on the RF circuit board 30. Before the end covers 90, 92 are fastened to the shell 52, the two board connectors 22, 40 are engaged with one another through the wall opening 94. Once assembled, the module 50 may be operatively connected with an associated communications platform via the connectors 24, 26, on the modem board 10, access to which is provided via one or more openings 96 in the second end cover 92. Separate openings also may be formed for passage of antenna and other signal wires or cables.
It will be appreciated that multiple CE modules 50 may be combined to enable multichannel, multiple input-multiple output (MIMO), and adaptive antenna array radio capabilities. See commonly owned U.S. patent application Ser. No. 13/455,745 filed Apr. 25, 2012, titled Individually Phase Controlled RF Oscillators for Antenna Beam Steering, and incorporated herein by reference.
A separate personality module in a compatible form factor may also allow the inventive module to be adapted for use with different radio platforms. See commonly owned U.S. patent application Ser. No. 13/461,888 filed May 2, 2012, titled Modular Radio Communications Systems Architecture, and incorporated herein by reference.
The inventive CE module 50 is uniquely small in size and power consumption for the functions it performs, allowing it to be readily adapted in multiple radio platforms while providing all necessary components to perform the modem and transceiver functions required of modern software defined military radios.
While the foregoing represents preferred embodiments of the invention, it will be understood by those skilled in the art that various modifications, additions, and changes may be made without departing from the spirit and scope of the invention, and that the invention includes all such modifications and changes as come within the scope of the following claims.
The present application claims priority under 35 U.S.C. Section 119(e) of U.S. Provisional Patent Application No. 61/483,964 filed May 9, 2011, titled Modular Radio Component (Core Engine—CE) Architecture, and incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61483964 | May 2011 | US |