Modular disconnecting drive module with torque vectoring augmentation

Information

  • Patent Grant
  • 10704663
  • Patent Number
    10,704,663
  • Date Filed
    Thursday, September 6, 2018
    6 years ago
  • Date Issued
    Tuesday, July 7, 2020
    4 years ago
Abstract
A drive module having a housing, an input pinion, a ring gear driven by the input pinion, a ring gear bearing supporting the ring gear for rotation relative to the housing, a pair of output shafts and a clutch that selectively transmits rotary power between the ring gear and the output shafts. The clutch includes a clutch input, which is rotatably coupled to the ring gear, a clutch plate separator that is rotatably coupled to the clutch input, a pair of clutch outputs, which are each coupled to a respective one of the output shafts, a pair of clutch packs, which transmit rotary power between the clutch input and a respective one of the clutch outputs, and a pair of apply pistons. The apply pistons are housed in the clutch plate separator.
Description
FIELD

The present disclosure relates to a modular disconnecting drive module with torque vectoring augmentation.


BACKGROUND

This section provides background information related to the present disclosure which is not necessarily prior art.


U.S. Pat. Nos. 6,041,904, 6,098,770 and 6,854,571 are examples of drive modules that employ a pair of friction clutches instead of a geared differential mechanism for supplying propulsive power to a pair of vehicle wheels. Such configurations can be advantageous, for example, when the drive module is to be provided with torque vectoring capabilities. While such drive modules are suited for their intended purpose, there remains a need in the art for an improved drive module.


SUMMARY

This section provides a general summary of the disclosure, and is not a comprehensive disclosure of its full scope or all of its features.


In one form, the present disclosure provides a drive module that includes a housing, an input pinion, a ring gear, a ring gear bearing, a clutch and first and second output shafts. The housing defines a central cavity, an input axis and an output axis that is transverse to the input axis. The input pinion is received in the central cavity and is rotatable about the input axis. The ring gear is received in the central cavity and is meshed with the input pinion. The ring gear bearing is mounted to the ring gear and the housing. The ring gear bearing supports the ring gear for rotation relative to the housing about the output axis. The clutch is received in the central cavity and includes a clutch input, which is coupled to the ring gear for rotation therewith, first and second clutch outputs, which are rotatable about the output axis, a clutch pack separator, which is disposed along the output axis between the first and second clutch outputs, first and second clutch packs, and first and second apply pistons. The clutch pack separator is coupled to the clutch input for rotation therewith, the first clutch pack having first and second clutch plates that are interleaved together. The first clutch plates are non-rotatably but axially slidably coupled to the clutch input. The second clutch plates are non-rotatably but axially slidably coupled to the first clutch output. The second clutch pack has third and fourth clutch plates that are interleaved together. The third clutch plates are non-rotatably but axially slidably coupled to the clutch input. The fourth clutch plates are non-rotatably but axially slidably coupled to the second clutch output. The first apply piston is disposed axially between the clutch plate separator and the first clutch pack. The second apply piston is disposed axially between the clutch plate separator and the second clutch pack. The first output shaft is coupled to the first clutch output for rotation therewith about the output axis. The second output shaft is coupled to the second clutch output for rotation therewith about the output axis.


Further areas of applicability will become apparent from the description provided herein. The description and specific examples in this summary are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.





DRAWINGS

The drawings described herein are for illustrative purposes only of selected embodiments and not all possible implementations, and are not intended to limit the scope of the present disclosure.



FIG. 1 is a perspective view of an exemplary drive module constructed in accordance with the teachings of the present disclosure;



FIG. 2 is a sectional view of the drive module of FIG. 1 taken along the line 2-2 of FIG. 1;



FIG. 3 is a sectional view taken along the line 3-3 of FIG. 1;



FIG. 4 is an enlarged portion of FIG. 3, illustrating a clutch in more detail;



FIG. 5 is an enlarged portion of FIG. 3, illustrating the clutch, a first output shaft, and a stem of a distribution block in more detail;



FIG. 6 is a perspective view of a portion of the drive module of FIG. 1, the view depicting a cover of a hydraulic supply in a partly fragmented manner to permit a reservoir inside the cover to be shown;



FIG. 7 is a section view of a portion of the drive module of FIG. 1, the view illustrating a pump and first and second control valves of the hydraulic supply;



FIG. 8 is a perspective view of a portion of the hydraulic supply, the view illustrating a distribution block;



FIG. 9 is a bottom plan view of a portion of the drive module of FIG. 1 illustrating the distribution block of the hydraulic supply in more detail; and



FIG. 10 is a perspective view of a portion of the drive module of FIG. 1 illustrating the distribution block of the hydraulic supply in more detail.





Corresponding reference numerals indicate corresponding parts throughout the several views of the drawings.


DETAILED DESCRIPTION

With reference to FIGS. 1 through 3, a drive module constructed in accordance with the teachings of the present disclosure is generally indicated by reference numeral 10. The drive module 10 can include a housing 12, an input pinion 14, a ring gear 16, a ring gear bearing 18, a clutch 20 and first and second output shafts 22 and 24, respectively, a hydraulic supply 26 and a controller 28.


The housing 12 can define a central cavity 36, an input axis 38 and an output axis 40 that is transverse to the input axis 38. The housing 12 can have first and second housing members 42 and 44 that are axially separable from one another along the output axis 40. The first housing member 42 can define an input pinion cavity 46, which can be disposed about the input axis 38 and intersect the central cavity 36, an annular shoulder 48, which is disposed concentrically about the output axis 40, a first coupling portion 50, a distribution block flange 52, and a stem receiving cavity 54. The first coupling portion 50 can include a pilot bore 60, which can be cylindrically shaped and disposed concentrically about the output axis 40, and a first flange member 62 that can be disposed about the pilot bore 60. The first flange member 62 includes a plurality of threaded apertures (not specifically shown). The distribution block flange 52 can be a flat planar surface that is formed onto the first housing member 42 about the stem receiving cavity 54. The stem receiving cavity 54 can be formed through the distribution block flange 52 and can intersect the central cavity 36. The second housing member 44 can define a second coupling portion 64 that can matingly engage the first coupling portion 50. In the example provided, the second coupling portion 64 include a pilot member 66, which can be received into the pilot bore 60 in a desired manner (e.g., slip fit or line-to-line fit), and a second flange member 68 that can be fixedly coupled via bolts (not shown) that are received through the second flange member 68 and threaded to the threaded apertures in the first flange member 62. A seal (not specifically shown) can be disposed between the first and second coupling portions 50 and 64.


The input pinion 14 can be disposed in the central cavity 36 and can extend through the input pinion cavity 46. The input pinion 14 can be supported by one or more pinion bearings for rotation about the input axis 38. In the example provided, the input pinion 14 is supported for rotation via a bearing 70, such as a four point angular contact bearing, that is configured to transmit thrust loads between the housing 12 and the input pinion 14 in both axial directions along the input axis 38. The input pinion 14 can be further supported relative to the housing 12 via a straddle bearing 72, which can be a roller bearing or a ball bearing. The straddle bearing 72 has radial load capabilities and no or limited (relative to the four point angular contact bearing 70) capability to handle thrust loads between the housing 12 and the input pinion 14. In the example provided, the inner bearing race 70a of the four point angular contact bearing 70 is integrally and unitarily formed with the input pinion 14.


The ring gear 16 is received in the central cavity 36 and is meshingly engaged with the input pinion 14 so as to be rotatable about the output axis 40. In the example provided, the input pinion 14 and the ring gear 16 are hypoid gears, but it will be appreciated that they could be configured differently.


The ring gear bearing 18 is mounted to the ring gear 16 and the shoulder 48 on the first housing member 42 and supports the ring gear 16 for rotation relative to the housing 12 about the output axis 40. The ring gear bearing 18 is configured to transmit thrust loads between the housing 12 and the ring gear 16 in both axial directions along the output axis 40. In the particular example provided, the ring gear bearing 18 is a four point angular contact bearing having an inner race 18a, which is mounted to the shoulder 48 formed on the first housing member 42, and an outer race 18b that is integrally and unitarily formed with the ring gear 16.


With reference to FIG. 4, the clutch 20 is received in the central cavity 36 and includes a clutch input 80, first and second clutch outputs 82 and 84, respectively, a clutch pack separator 86, first and second clutch packs 88 and 90, respectively, and first and second apply pistons 92 and 94, respectively. The clutch input 80 is coupled to the ring gear 16 for rotation therewith. In the example provided, the clutch input 80 is an outer clutch basket having an annular wall member 96 that defines a set of spline teeth 98 that are disposed about the inside circumferential surface of the annular wall member 96.


The first and second clutch outputs 82 and 84 are spaced apart from one another along the output axis 40 and are rotatable relative to one another as well as the clutch input 80 about the output axis 40. Each of the first and second clutch outputs 82 and 84 includes a hub portion 100, which can define an internally-splined aperture 102, and an inner plate mount 104 that can be a sleeve-like structure that can extend from the hub portion 100 and which can include a plurality of external splines 106 that can be disposed about the circumference of the inner plate mount 104.


The clutch pack separator 86 can include an annular outer wall 110, a hollow hub 112 and a radial wall 114 that extends radially between the outer wall 110 and the hub 112. The outer wall 110 can define a plurality of spline teeth 116 (only one shown) that can non-rotatably but axially slidably engage with the spine teeth 98 on the annular wall member 96 of the clutch input 80. Accordingly, it will be appreciated that the clutch pack separator 86 is rotatably coupled to the clutch input 80. The hub 112 can be disposed concentrically within the outer wall 110 and defines a hub aperture 120. The radial wall 114 divides the clutch pack separator 86 into first and second annular chambers 122 and 124, respectively, that are disposed on opposite sides of the radial wall 114. First and second supply apertures 126 and 128 can be formed through the hub 112 on opposite sides of the radial wall 114.


The first clutch pack 88 has first and second clutch plates 130 and 132, respectively, that are interleaved together. The first clutch plates 130 have an externally splined circumference that is matingly received into the annular wall member 96 of the clutch input 80 so that the externally splined circumference of the first clutch plates 130 non-rotatably but axially slidably engage the spline teeth 98 of the clutch input 80. The second clutch plates 132 have an internally splined aperture that matingly receives the external splines 106 on the outside circumference of the inner plate mount 104 to thereby non-rotatably but axially slidably couple the second clutch plates 132 to the first clutch output 82.


The second clutch pack 90 has third and fourth clutch plates 134 and 136, respectively, that are interleaved together. The third clutch plates 134 have an externally splined circumference that is matingly received into the annular wall member 96 of the clutch input 80 so that the externally splined circumference of the third clutch plates 134 non-rotatably but axially slidably engage the spline teeth 98 of the clutch input 80. The fourth clutch plates 136 have an internally splined aperture that matingly receives the external splines 106 on the outside circumference of the inner plate mount 104 to thereby non-rotatably but axially slidably couple the fourth clutch plates 136 to the second clutch output 84.


The first apply piston 92 can be disposed within the first annular chamber 122 axially between the clutch pack separator 86 and the first clutch pack 88. The first apply piston 92 can comprise an annular piston body 140, an outer peripheral seal 142, which can seal the piston body 140 to inside surface 144 of the outer wall 110 of the clutch pack separator 86, and an inner peripheral seal 148 that can seal the piston body 140 to the outside surface 150 of the hub 112 of the clutch pack separator 86. The piston body 140 can include a radially outer edge 152, a radially inner edge 154, an annular contact member 156, and a stop member 158. The radially outer edge 152 can be received in the annular outer wall 110 of the clutch pack separator 86, while the radially inner edge 154 can be received over the hollow hub 112 of the clutch pack separator 86. The outer peripheral seal 142 be coupled to (e.g., formed onto) the radially outer edge 152 and can be sealingly engaged to the annular outer wall 110. The inner peripheral seal 148 can be coupled to (e.g., formed onto) the radially inner edge 154 and can be sealingly engaged to the hub 112. The annular contact member 156 is configured to engage the first clutch pack 88 when fluid pressure drives the piston body 140 away from the radial wall 114 of the clutch pack separator 86. The stop member 158 can be disposed radially between the radially outer edge 152 and the radially inner edge 154 and is configured to contact the radial wall 114 of the clutch pack separator 86 to limit movement of the first apply piston 92 in a direction away from the first clutch pack 88. A first chamber 160 can be formed between the radial wall 114 of the clutch pack separator 86 and the piston body 140 of the first apply piston 92. The first chamber 160 can be in fluid communication with the first supply aperture 126.


A first return spring 162 can be disposed about the hollow hub 112 and can bias the first apply piston 92 away from the first clutch pack 88. In the example provided, the first return spring 162 comprises a plurality of helical coil compression springs 164 that are disposed concentrically about the hollow hub 112 between a pair of spring plates 166. A first one of the spring plates 166 abuts the piston body 140 of the first apply piston 92, while the other one of the spring plates 166 abuts an external retaining ring 168 that is mounted to the hollow hub 112.


The second apply piston 94 can be disposed within the second annular chamber 124 axially between the clutch pack separator 86 and the second clutch pack 90. The second apply piston 94 can comprise an annular piston body 180, an outer peripheral seal 182, which can seal the piston body 180 to an inside surface 184 of the outer wall 110 of the clutch pack separator 86, and an inner peripheral seal 188 that can seal the piston body 180 to the outside surface 190 of the hub 112 of the clutch pack separator 86. The piston body 180 can include a radially outer edge 192, a radially inner edge 194, an annular contact member 196, and a stop member 198. The radially outer edge 192 can be received in the annular outer wall 110 of the clutch pack separator 86, while the radially inner edge 194 can be received over the hollow hub 112 of the clutch pack separator 86. The outer peripheral seal 182 be coupled to (e.g., formed onto) the radially outer edge 192 and can be sealingly engaged to the annular outer wall 110. The inner peripheral seal 188 can be coupled to (e.g., formed onto) the radially inner edge 194 and can be sealingly engaged to the hub 112. The annular contact member 196 is configured to engage the second clutch pack 90 when fluid pressure drives the piston body 180 away from the radial wall 114 of the clutch pack separator 86. The stop member 198 can be disposed radially between the radially outer edge 192 and the radially inner edge 194 and is configured to contact the radial wall 114 of the clutch pack separator 86 to limit movement of the second apply piston 94 in a direction away from the second clutch pack 90. A second chamber 200 can be formed between the radial wall 114 of the clutch pack separator 86 and the piston body 180 of the second apply piston 94. The second chamber 200 can be in fluid communication with the second supply aperture 128.


A second return spring 202 can be disposed about the hollow hub 112 and can bias the second apply piston 94 away from the second clutch pack 90. In the example provided, the second return spring 202 comprises a plurality of helical coil compression springs 204 that are disposed concentrically about the hollow hub 112 between a pair of spring plates 206. A first one of the spring plates 206 abuts the piston body 180 of the second apply piston 94, while the other one of the spring plates 206 abuts an external retaining ring 208 that is mounted to the hollow hub 112.


Returning to FIG. 3, each of the first and second output shafts 22 and 24 is configured to transmit rotary power between a respective one of the first and second clutch outputs 82 and 84 and an associated vehicle wheel (not shown). In the example provided, the drive module 10 is suspended independently from a pair of wheels (not shown) that are driven by the drive module 10. As such, each of the first and second output shafts 22 and 24 includes a male splined shaft member 210 is configured to drivingly engage a constant velocity joint (not shown) of a half-shaft (not shown) that transmits rotary power between a respective one of the first and second clutch outputs 82 and 84 and an associated vehicle wheel.


With reference to FIG. 5, the first output shaft 22 can include a male splined segment 220 and a fluid distribution portion 222 having a fluid distribution section 224, a fluid inlet section 226 and a fluid outlet section 228. The male splined segment 220 can be received into the internally-splined aperture 102 in the hub portion 100 of the first clutch output 82 to non-rotatably but axially slidably couple the first output shaft 22 to the first clutch output 82.


The fluid distribution section 224 can comprise one of more channels or passages that extend longitudinally through the first output shaft 22 between the fluid inlet section 226 and the fluid outlet section 228. In the example provided, the fluid distribution section 224 comprises a first passage 230 and a second passage 232. The first passage 230 is a distribution conduit that can be defined in part by a longitudinal bore 234 that is formed through the first output shaft 22. The second passage 232 is a distribution conduit that can be defined in part by a tube 236 that is received into the longitudinal bore 234. The tube 236 can have a central portion 238, which is formed of a first diameter or cross-sectional area, and end sections 240a and 240b that are formed of a second diameter or cross-sectional area that is larger than that of the central portion 238. Each of the end sections 240a and 240b is sealingly engaged to the surface of the longitudinal bore 234. The first passage 230 extends axially between the end sections 240a and 240b of the tube, has an annular cross-sectional shape and is disposed radially between the tube 236 and the surface of the longitudinal bore 234. The second passage 232 includes the volume defined by the tube 236 and extends into the longitudinal bore 234 on sides of each of the end sections 240a and 240b that are opposite the second passage 232.


The fluid inlet section 226 can be spaced axially apart from the male splined segment 220 and can include one or more fluid inlets, which can be coupled in fluid communication with the fluid distribution section 224, and optionally one or more seal mounts 244a, 244b, and 244c. In the particular example provided, the fluid inlet section 226 includes three seal mounts 244a, 244b and 244c, a first fluid inlet 246 that is disposed between the seal mounts 244a and 244b, and a second fluid inlet 248 that is disposed between the seal mounts 244b and 244c. The first fluid inlet 246 can comprise one or more holes that are formed radially through the first output shaft 22 and which intersect the first passage 230. The second fluid inlet 248 can comprise one or more holes that are formed radially through the first output shaft 22 and which intersect the second passage 232.


The fluid outlet section 228 can include one or more fluid outlets, which can be coupled in fluid communication with the fluid distribution section 224, and optionally one or more seal mounts 250a, 250b, and 250c. In the particular example provided, the fluid outlet section 228 includes three seal mounts 250a, 250b and 250c, a first fluid outlet 252 that is disposed between the seal mounts 250a and 250b, and a second fluid outlet 254 that is disposed between the seal mounts 250b and 250c. The first fluid outlet 252 can comprise one or more holes that are formed radially through the first output shaft 22 and which intersect the first passage 230. The first fluid outlet 252 can be in fluid communication with the first supply aperture 126. The second fluid outlet 254 can comprise one or more holes that are formed radially through the first output shaft 22 and which intersect the second passage 232. The second fluid outlet 254 can be in fluid communication with the second supply aperture 128.


Appropriate seals, such as O-rings 260, can be received on each of the seal mounts 244a, 244b, 244c, 250a, 250b and 250c. The O-rings 260 on the seal mounts 250a, 250b and 250c can each form a seal between the first output shaft 22 and the inside diametrical surface of the hub aperture 262 in the hub 112 of the clutch pack separator 86. If desired, bearings, such as a pair of needle bearings 266, can be disposed on opposite axial sides of the fluid outlet section 228 and can support the first output shaft 22 for rotation within the hub 112 of the clutch pack separator 86.


The second output shaft 24 can be configured in a conventional manner and can include a male splined segment 270 that can be received within and meshingly engage the internally-splined aperture 102 of the hub portion 100 of the second clutch output 84 to thereby rotatably couple the second output shaft 24 to the second clutch output 84. One of the first and second output shafts 22 and 24 can include a bearing bore 274 and the other one of the first and second output shafts 22 and 24 can include a shaft segment 276. An appropriate bearing, such as a needle bearing 278, can be received between the shaft segment 276 and the bearing bore 274. In the particular example provided, the shaft segment 276 is formed on the first output shaft 22 and the bearing bore 274 is formed in the second output shaft 24.


With reference to FIGS. 6 and 7, the hydraulic supply 26 can include a pump 300, an electric motor 302, a distribution block 304, a cover 306, first and second control valves 308 and 310, respectively. The electric motor 302 can operate in response to a motor control signal generated by the controller 28. The pump 300 can be any type of fluid pump, such as a gear pump, and can have a pump housing 320 and a pump input member 322. The pump housing 320 can be fixedly coupled to the electric motor 302, while the pump input member 322 can be drivingly coupled to an output member 324 of the electric motor 302.


With reference to FIGS. 7 through 10, the distribution block 304 can define a distribution block structure 350, a motor/pump mount 352, first and second valve mounts 354 and 356, respectively, first and second feed conduits 358 and 360, respectively, first and second intermediate conduits 362 and 364, respectively. The distribution block structure 350 can include a base 370 and a stem 372. The base 370 is configured to sealingly engage (via a gasket that is not specifically shown) the distribution block flange 52 on the first housing member 42. The base 370 can define one or more drain apertures 378 that are disposed within an area where the base 370 is sealingly engaged to the distribution block flange 52. The drain apertures 378 can extend through the base 370. The stem 372 can be fixedly coupled to and project from a side of the base 370 that faces the distribution block flange 52. The stem 372 can be disposed within an area where the base 370 is sealingly engaged to the distribution block flange 52 and can define an output shaft aperture 380. The stem 372 is received into the stem receiving cavity 54 (FIG. 5) and the first output shaft 22 (FIG. 5) is received through the output shaft aperture 380.


The motor/pump mount 352 is configured to receive the pump 300 and is configured to fluidly couple a fluid outlet 382 of the pump 300 to the first and second feed conduits 358 and 360. The first and second valve mounts 354 and 356 are configured to mechanically couple the first and second control valves 308 and 310, respectively to the base 370. In the example provided, the first valve mount 354 includes a threaded aperture that is in fluid communication with the first feed conduit 358 and the second valve mount 356 includes a threaded aperture that is in fluid communication with the second feed conduit 360. Accordingly, the first feed conduit 358 extends between the fluid outlet 382 of the pump 300 and the first valve mount 354, while the second feed conduit 360 extends between the fluid outlet 382 of the pump 300 and the second valve mount 356. The first intermediate conduit 362 can extend from the first valve mount 354 through the base 370 and through the stem 372 where it can intersect the output shaft aperture 380. Similarly, the second intermediate conduit 364 can extend from the second valve mount 356 through the base 370 and through the stem 372 where it can intersect the output shaft aperture 380 at a location that is spaced apart from the first intermediate conduit 362. In the example provided, the first and second intermediate conduits 362 and 364 are partly formed by grooves that are formed in the distribution block structure 350; a cover plate 386 is secured to the distribution block structure 350 to seal the open side of the grooves in the distribution block structure 350.


With reference to FIGS. 5 and 8, the O-rings 260 that are received on each of the seal mounts 244a, 244b, and 244c can form seals between the first output shaft 22 and a circumferential surface of the output shaft aperture 380 so that the first intermediate conduit 362 is in fluid communication with the first fluid inlet 246 and the second intermediate conduit 364 is in fluid communication with the second fluid inlet 248.


Returning to FIG. 6, the cover 306 can be coupled to the distribution block 304 on a side of the distribution block 304 opposite the distribution block flange 52. The cover 306 can define a fluid reservoir 390 that can be in fluid communication with a pump inlet 392 (FIG. 10) of the pump 300 and the drain apertures 378 (FIG. 10) in the base 370. If desired, the cover 306 can include a plurality of cooling fins 394, which promote the rejection of heat to the air around the cover 306, an oil drain plug 396, which permits the fluid in the reservoir 390 to be drained, and a shroud 398 that shields the underside of the first and second control valves 308 and 310 from debris that may be kicked up during operation of the drive module.


With reference to FIGS. 7 and 9, the first and second control valves 308 and 310 can be any type of valve for controlling fluid communication between the first and second feed conduits 358 and 360, respectively, and the first and second intermediate conduits 362 and 364, respectively. In the example provided, the first and second control valves 308 and 310 are normally closed, solenoid operated valves that can be selectively opened to permit pressurized fluid in the first and second feed conduits 358 and 360, respectively, to flow into the first and second intermediate conduits 362 and 364, respectively. The first and second control valves 308 and 310 can be responsive to first and second valve control signals that are generated by the controller 28 and transmitted to the first and second control valves 308 and 310, respectively.


Returning to FIGS. 1, 3 and 6, a power source (not shown), such as an internal combustion engine or an electric motor, can provide rotary power to the input pinion 14 to cause the input pinion 14 to drive the ring gear 16 about the output axis 40. The controller 28 can operate the electric motor 302 to drive the pump 300 such that the pump 300 draws fluid from the reservoir 390 and supplies pressurized fluid that is transmitted through the first and second feed conduits 358 and 360 (FIG. 7) to the first and second control valves 308 and 310, respectively. It will be appreciated that fluid drawn from the reservoir 390 into the pump 300 can pass through a filter (not shown).


With reference to FIGS. 1, 4 and 5, the controller 28 can operate the first and second control valves 308 and 310 to supply pressurized fluid to the first and second chambers 160 and 200, respectively. In this regard, pressurized fluid discharged through the first control valve 308 is transmitted (in sequence) through the first intermediate conduit 362, out of the distribution block stem 372 into the first fluid inlet 246 in the fluid inlet section 226 of the first output shaft 22, through the first passage 230 and the first fluid outlet 252, out of the first output shaft 22 and through the first supply aperture 126 in the hub 112. Similarly, pressurized fluid discharged through the second control valve 310 is transmitted (in sequence) through the second intermediate conduit 364, out of the distribution block stem 372 into the second fluid inlet 248 in the fluid inlet section 226 of the first output shaft 22, through the second passage and the second fluid outlet 254, out of the first output shaft 22 and through the second supply aperture 128 in the hub 112. Pressurized fluid in the first and second chambers 160 and 200 can urge the first and second apply pistons 92 and 94, respectively, toward the first and second clutch packs 88 and 90, respectively, to thereby compress the first and second clutch packs 88 and 90, respectively. It will be appreciated that the magnitude of the torque that can be transmitted between the ring gear 16 and each of the first and second output shafts 22 and 24 is at least partly dependent upon the magnitude of the force exerted by the first and second apply pistons 92 and 94, respectively, to the first and second clutch packs 88 and 90, respectively. It will also be appreciated that the first and second control valves 308 and 310 could be operated differently so that the forces exerted on the first and second clutch packs 88 and 90, respectively, are different. The application of different forces to the first and second clutch packs 88 and 90 could be employed, for example, to permit a difference in rotational speed between the first and second output shafts 22 and 24.


If desired, the reduction ratio or speed ratio of the input pinion 14 and the ring gear 16 can be selected to drive the clutch input 80 at a rotational speed than a desired rotational speed of the first and second output shafts 22 and 24. Accordingly, the controller 28 can operate the first and second control valves 308 and 310 such that the force exerted by the first and second apply pistons 92 and 94, respectively, to the first and second clutch packs 88 and 90, respectively, permits a desired amount of relative rotation between the clutch input 80 and the first and second output shafts 22 and 24, respectively. Stated another way, the controller 28 can operate the first and second control valves 308 and 310 to limit the torque that is output from the clutch 20 to the first and second output shafts 22 and 24 to drive the first and second output shafts 22 and 24 at a rotational speed that is relatively slower than the rotational speed of the clutch input 80. Configuration of the reduction ratio or speed ratio of the input pinion 14 and the ring gear 16 in this manner provides a torque-vectoring capability in which an additional amount of speed and torque can be applied to one of the first and second output shafts 22 and 24 and a lesser amount of speed and torque can be applied to the other one of the first and second output shafts 22 and 24.


In a first alternative, a single one of the first and second control valves 308 and 310 could be employed to control the fluid pressure that acts on the first and second apply pistons 92 and 94, for example if a) the first and second intermediate conduits 362 and 364 (FIG. 9) were to be coupled in fluid communication, and/or b) the first and second fluid inlets 246 and 248 (FIG. 5) were to be coupled in fluid communication, and/or c) the first and second passages 230 and 232 (FIG. 5) were to be coupled in fluid communication, and/or d) the first and second fluid outlets 252 and 254 (FIG. 5) were to be coupled in fluid communication, and/or d) the first and second supply apertures 126 and 128 (FIG. 4) were to be coupled in fluid communication, and/or e) the first and second chambers 160 and 200 (FIG. 4) were to be coupled in fluid communication. In a second alternative, the first and second control valves 308 and 310 could be omitted and the electric motor 302 could be controlled by the controller 28 to control the fluid pressure that acts on the first and second apply pistons 92 and 94 (FIG. 4).


The foregoing description of the embodiments has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure. Individual elements or features of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or described. The same may also be varied in many ways. Such variations are not to be regarded as a departure from the disclosure, and all such modifications are intended to be included within the scope of the disclosure.

Claims
  • 1. A drive module comprising: a housing defining a central cavity, an input axis and an output axis that is transverse to the input axis;an input pinion received in the central cavity and rotatable about the input axis;a ring gear received in the central cavity and meshed with the input pinion, the ring gear having a plurality of teeth and a toe, the toe being located at a radially inner end of the teeth;a ring gear bearing mounted to the ring gear and the housing, the ring gear bearing supporting the ring gear for rotation relative to the housing about the output axis;a clutch received in the central cavity, the clutch having a clutch input, which is coupled to the ring gear for rotation therewith, first and second clutch outputs, which are rotatable about the output axis, a clutch pack separator, which is disposed along the output axis between the first and second clutch outputs, first and second clutch packs, and first and second apply pistons, the clutch pack separator being coupled to the clutch input for rotation therewith, the first clutch pack having first and second clutch plates that are interleaved together, the first clutch plates being non-rotatably but axially slidably coupled to the clutch input, the second clutch plates being non-rotatably but axially slidably coupled to the first clutch output, the second clutch pack having third and fourth clutch plates that are interleaved together, the third clutch plates being non-rotatably but axially slidably coupled to the clutch input, the fourth clutch plates being non-rotatably but axially slidably coupled to the second clutch output, the first apply piston being disposed axially between the clutch plate separator and the first clutch pack, the second apply piston being disposed axially between the clutch plate separator and the second clutch pack;a first output shaft coupled to the first clutch output for rotation therewith about the output axis; anda second output shaft coupled to the second clutch output for rotation therewith about the output axis;wherein an outer diameter of the first clutch pack and an outer diameter of the second clutch pack are larger than a diameter of the toe of the ring gear, and wherein an inner diameter of the first clutch pack and an inner diameter of the second clutch pack are smaller in diameter than an outer bearing race of the ring gear bearing.
  • 2. The drive module of claim 1, wherein the housing has first and second housing members that are axially separable from one another along the output axis.
  • 3. The drive module of claim 1, wherein the first apply piston is sealingly engaged to the clutch plate separator.
  • 4. The drive module of claim 3, wherein the clutch plate separator defines an annular chamber in which the first apply piston is received.
  • 5. The drive module of claim 3, wherein the second apply piston is sealingly engaged to the clutch plate separator.
  • 6. The drive module of claim 5, wherein the clutch plate separator defines first and second annular chambers, the first apply piston being received in the first annular chamber, the second apply piston being received in the second annular chamber.
  • 7. The drive module of claim 1, wherein the clutch plate separator comprises a hollow hub that is disposed concentrically about a portion of one of the first and second output shafts, wherein a first supply aperture is formed radially through the hub, the first supply aperture being adapted to fluidly couple a first chamber between the clutch plate separator and the first apply piston to a source of pressurized fluid.
  • 8. The drive module of claim 7, wherein the hub is sealingly engaged to the one of the first and second output shafts, and wherein a first distribution conduit is disposed in the one of the first and second output shafts, the first distribution conduit being coupled in fluid communication to the first supply aperture.
  • 9. The drive module of claim 8, further comprising a distribution block having a base and a stem that extends from the base, the stem extending into the central cavity in the housing and defining a shaft aperture through which the one of the first and second output shafts is received through, the stem being sealingly engaged to the one of the first and second output shafts and having a first intermediate conduit that is coupled in fluid communication to the first distribution conduit in the one of the first and second output shafts.
  • 10. The drive module of claim 9, wherein the distribution block includes a pump mount to which a pump is coupled, the pump being configured to supply a pressurized fluid to the first intermediate conduit.
  • 11. The drive module of claim 10, further comprising a first control valve mounted to the distribution block and disposed in a first fluid path between the pump and an end of the first intermediate conduit that intersects the shaft aperture.
  • 12. The drive module of claim 11, wherein a second distribution conduit is disposed in the one of the first and second output shafts, wherein a second supply aperture is formed radially through the hub, the second supply aperture fluidly couples the second distribution conduit to a second chamber between the clutch plate separator and the second apply piston, wherein the stem has a second intermediate conduit that is coupled in fluid communication to the second distribution conduit in the one of the first and second output shafts, and wherein the drive module further comprises a second control valve mounted to the distribution block and disposed in a second fluid path between the pump and an end of the second intermediate conduit that intersects the shaft aperture.
  • 13. The drive module of claim 9, wherein a second distribution conduit is disposed in the one of the first and second output shafts, wherein a second supply aperture is formed radially through the hub, the second supply aperture fluidly couples the second distribution conduit to a second chamber between the clutch plate separator and the second apply piston, wherein the stem has a second intermediate conduit that is coupled in fluid communication to the second distribution conduit in the one of the first and second output shafts.
  • 14. The drive module of claim 9, wherein the housing defines a stem receiving cavity that extends between the central cavity and an external surface of the housing, the stem receiving cavity extending perpendicular to the output axis, wherein the base is abutted against the external surface.
  • 15. The drive module of claim 8, wherein a second distribution conduit is disposed in the one of the first and second output shafts, wherein a second supply aperture is formed radially through the hub, the second supply aperture fluidly couples the second distribution conduit to a second chamber between the clutch plate separator and the second apply piston.
  • 16. The drive module of claim 7, wherein a second supply aperture is formed radially through the hub, the second supply aperture being adapted to fluidly couple a second chamber between the clutch plate separator and the second apply piston to the source of pressurized fluid.
US Referenced Citations (167)
Number Name Date Kind
696704 Allen Apr 1902 A
783168 Baker Feb 1905 A
899891 Niclausse Sep 1908 A
1128429 Fetzer Feb 1915 A
1362361 Starr Dec 1920 A
1987716 Skelton Jan 1935 A
2609710 Osborn Sep 1952 A
3344687 Stockton Oct 1967 A
3352395 Hilpert Nov 1967 A
3385133 Terao May 1968 A
3394610 Szodfridt Jul 1968 A
3741030 Asberg Jun 1973 A
3749217 Bush et al. Jul 1973 A
3777360 Welch Dec 1973 A
3792625 Asberg Feb 1974 A
3905457 Shea Sep 1975 A
3915267 Shea Oct 1975 A
4004472 Millward et al. Jan 1977 A
4182201 Mayhew et al. Jan 1980 A
4381828 Lunn et al. May 1983 A
4763749 Miura et al. Aug 1988 A
4782721 Dick Nov 1988 A
4862988 Umemoto Sep 1989 A
4875978 Hiketa Oct 1989 A
4915190 Iwata Apr 1990 A
4938306 Sumiyoshi et al. Jul 1990 A
5041069 Horst Aug 1991 A
5061229 Tsukamoto et al. Oct 1991 A
5065639 Flanhardt et al. Nov 1991 A
5069305 Kobayashi Dec 1991 A
5083986 Teraoka et al. Jan 1992 A
5098355 Long Mar 1992 A
5105901 Watanabe et al. Apr 1992 A
5105902 Wilson et al. Apr 1992 A
5119900 Watanabe Jun 1992 A
5156247 Wiese et al. Oct 1992 A
5174408 Hock Dec 1992 A
5188194 Gasch Feb 1993 A
5203750 Oster et al. Apr 1993 A
5234072 Chludek Aug 1993 A
5314039 Hock May 1994 A
5341893 Fukui Aug 1994 A
5411110 Wilson et al. May 1995 A
5423235 Botterill et al. Jun 1995 A
5484033 Frank et al. Jan 1996 A
5503494 Kamata et al. Apr 1996 A
5547430 Gasch Aug 1996 A
5560687 Hagelthorn Oct 1996 A
5562566 Yang Oct 1996 A
5632185 Gassmann May 1997 A
5662543 Forsyth Sep 1997 A
5690201 Gassmann Nov 1997 A
5706923 Gassmann Jan 1998 A
5722305 Sawa Mar 1998 A
5762578 Forsyth Jun 1998 A
5839986 Yamazaki Nov 1998 A
5865701 Sowa et al. Feb 1999 A
5913745 Inagaki et al. Jun 1999 A
5935036 Gassmann et al. Aug 1999 A
5951428 Itoh et al. Sep 1999 A
5964126 Okcuoglu Oct 1999 A
6056663 Fett May 2000 A
6077183 Tar et al. Jun 2000 A
6113512 Williams Sep 2000 A
6116392 Gassmann Sep 2000 A
6209673 Barlage et al. Apr 2001 B1
6241067 Hock Jun 2001 B1
6254196 Gee Jul 2001 B1
6263995 Watson et al. Jul 2001 B1
6267214 Kwoka Jul 2001 B1
6283884 El-Kassouf Sep 2001 B1
6394246 Gassmann May 2002 B1
6431337 Hock et al. Aug 2002 B1
6443282 Kwoka Sep 2002 B1
6446773 Kwoka Sep 2002 B2
6461267 Paielli Oct 2002 B1
6520885 Gassmann et al. Feb 2003 B2
6533090 Osborn et al. Mar 2003 B2
6540634 Thompson Apr 2003 B2
6544140 Gradu et al. Apr 2003 B2
6547025 Gassmann et al. Apr 2003 B1
6557677 Peura May 2003 B2
6582334 Noll Jun 2003 B1
6592487 Gassmann Jul 2003 B2
6616565 Chen et al. Sep 2003 B1
6623396 Szalony et al. Sep 2003 B2
6645113 Orr et al. Nov 2003 B2
6652408 Rutt et al. Nov 2003 B2
6681913 Lee Jan 2004 B2
6695739 Fett Feb 2004 B2
6699154 Orr et al. Mar 2004 B2
6702707 Krzesicki et al. Mar 2004 B2
6719661 Turner et al. Apr 2004 B2
6769506 Gassmann et al. Aug 2004 B2
6779420 Peura Aug 2004 B2
6805653 Krzesicki et al. Oct 2004 B2
6814682 Spitale Nov 2004 B2
6824489 Jacob et al. Nov 2004 B2
6827663 Tucker-Peake Dec 2004 B2
6849017 Nett Feb 2005 B2
6851501 Gassmann Feb 2005 B2
6863634 Holman et al. Mar 2005 B2
6863684 Kim et al. Mar 2005 B2
6896463 Tuthill May 2005 B2
6945899 Peura Sep 2005 B2
6974400 Williams Dec 2005 B2
7022041 Valente Apr 2006 B2
7086983 Turner et al. Aug 2006 B2
7094172 Ishikawa Aug 2006 B2
7150694 Mizon et al. Dec 2006 B2
7155824 Prucher Jan 2007 B2
7188699 Moore et al. Mar 2007 B2
7232399 Valente Jun 2007 B2
7314416 Loughrin et al. Jan 2008 B2
7331896 Kroppe Feb 2008 B1
7393301 Green, Jr. Jul 2008 B2
7452301 Yoshioka Nov 2008 B2
7500934 Ziech Mar 2009 B2
7520833 Honda et al. Apr 2009 B2
7533754 Burrows et al. May 2009 B2
7775928 Zink Aug 2010 B2
7901318 Downs et al. Mar 2011 B2
7984782 Platt et al. Jul 2011 B2
8167758 Downs et al. May 2012 B2
8215440 Hoffmann et al. Jul 2012 B2
8616780 Kwasniewski et al. Dec 2013 B2
8951159 Fox et al. Feb 2015 B2
9346354 Valente May 2016 B2
9366354 Nanahara et al. Jun 2016 B2
9598069 Kato Mar 2017 B2
9688141 Takaishi et al. Jun 2017 B2
9731597 Zink Aug 2017 B2
9981552 Ogawa et al. May 2018 B2
20020032096 Gassmann Mar 2002 A1
20030070501 Bell Apr 2003 A1
20030089185 Hock et al. May 2003 A1
20030166432 Patzer et al. Sep 2003 A1
20030186774 Sullivan Oct 2003 A1
20030211913 Spitale Nov 2003 A1
20030236147 Fett Dec 2003 A1
20040162179 Krzesicki et al. Aug 2004 A1
20040198548 Showalter et al. Oct 2004 A1
20050023063 Mueller Feb 2005 A1
20050101430 Ziech May 2005 A1
20050245342 Pontanari et al. Nov 2005 A1
20060254382 Ebihara Nov 2006 A1
20060283654 Krisher Dec 2006 A1
20070289797 Bowen Dec 2007 A1
20080128234 Mogami et al. Jun 2008 A1
20080305910 Brasile et al. Dec 2008 A1
20080318725 Waksmundzki Dec 2008 A1
20090160274 Aikawa et al. Jun 2009 A1
20090163313 Gassmann et al. Jun 2009 A1
20090270217 Zohrer Oct 2009 A1
20100151982 Waksmundzki Jun 2010 A1
20100151983 Ziech et al. Jun 2010 A1
20110123264 Wang May 2011 A1
20120024614 Sigmund et al. Feb 2012 A1
20120204664 Peura et al. Aug 2012 A1
20130303323 Zink et al. Nov 2013 A1
20140274544 Downs et al. Sep 2014 A1
20140342866 Valente et al. Nov 2014 A1
20150033909 Campbell Feb 2015 A1
20150053046 Ibusuki Feb 2015 A1
20150057897 Stoiber et al. Feb 2015 A1
20150314679 Rode et al. Nov 2015 A1
20160039284 Osborn et al. Feb 2016 A1
Foreign Referenced Citations (18)
Number Date Country
201334012 Oct 2009 CN
01627594 Aug 1970 DE
1555366 Oct 1970 DE
07106774 May 1971 DE
02132412 Jan 1972 DE
03132443 Feb 1983 DE
19713211 Dec 1997 DE
10209166 Sep 2003 DE
102012206143 Oct 2013 DE
1348589 Oct 2003 EP
00881308 Nov 1961 GB
S60-084472 May 1985 JP
H06-117518 Apr 1994 JP
2001010304 Jan 2001 JP
2006182242 Jul 2006 JP
2011063224 Mar 2011 JP
WO-2010123964 Oct 2010 WO
WO-2014151287 Sep 2014 WO
Related Publications (1)
Number Date Country
20200080625 A1 Mar 2020 US