The present disclosure relates generally to wellbore isolation devices, and specifically to elements for inflatable packers.
Fluid-energized, or inflatable, packers are isolation devices used in a downhole wellbore to seal against the inside of the wellbore or a downhole tubular to separate the section of wellbore or tubular on one side of the inflatable packer from that on the other side of the inflatable packer. Typical inflatable packers use elastic bladders positioned on the outside of a precision mandrel which, in response to an increased pressure within the bladder, expand until they contact the surrounding wellbore or tubular. Continued expansion causes an increase in contact area and force between the bladder and the wellbore or tubular, thereby sealing the annular space around the packer.
The present disclosure provides for a modular downhole packer. The modular downhole packer may include a valve body, the valve body including a threaded coupler adapted to couple to a tubular and a valve assembly. The modular downhole packer may include a packer element assembly. The packer element assembly may include a first end coupler, the first end coupler mechanically coupled to the valve body; a packer element; and a second end coupler. The modular downhole packer may include a floating seal element, the floating seal element mechanically coupled to the second end coupler, the floating seal element including a seal extension. The modular downhole packer may include a floating end anchor. The floating end anchor may include a compression seal housing, the compression seal housing including an outer sealing surface positioned within the seal extension of the second end coupler; a compression seal positioned within a seal pocket formed in the compression seal housing; and an anchor body, the anchor body threadedly coupled to the seal pocket of the compression seal housing, the anchor body abutting the compression seal.
The present disclosure also provides for a method. The method may include providing a tubular, the tubular having a threaded end. The method may include mechanically coupling a valve housing to the threaded end of the tubular. The method may include mechanically coupling a packer element assembly to the valve housing. The packer element assembly may be positioned about the tubular. The method may include mechanically coupling a floating seal element to the packer element assembly; mechanically coupling a floating end anchor to the floating seal element, the floating end anchor including a compression seal; compressing the compression seal to the tubular; and anchoring the floating end anchor to the tubular.
The present disclosure is best understood from the following detailed description when read with the accompanying figures. It is emphasized that, in accordance with the standard practice in the industry, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion.
It is to be understood that the following disclosure provides many different embodiments, or examples, for implementing different features of various embodiments. Specific examples of components and arrangements are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to be limiting. In addition, the present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed.
In some embodiments, valve body 101 may include valve assembly 109 positioned to allow for the actuation of modular downhole packer system 100 using fluid pressure from within valve body 101 as provided through the tubular string within which modular downhole packer system 100 is included as further described below.
In some embodiments, modular downhole packer system 100 may include packer element assembly 121. Packer element assembly 121 may be tubular in shape and may be positioned about and extend along tubular 107. In some embodiments, packer element assembly 121 may include first end coupler 123, packer element 125, and second end coupler 127. First end coupler 123 and second end coupler 127 may be mechanically coupled to packer element 125 such that packer element 125 is positioned about tubular 107. The annular space between packer element 125 and tubular 107 may be defined as interior cavity 129 of modular downhole packer system 100 and may be sealed to tubular 107 as further described below such that when fluid pressure within interior cavity 129 increases, packer element 125 inflates and moves radially outward from tubular 107.
In some embodiments, first end coupler 123 may, as shown in
In some embodiments, second end coupler 127 may be threadedly coupled to floating seal element 131 at element coupler 133. In other embodiments, second end coupler 127 may be mechanically coupled to floating seal element 131 by, for example and without limitation, one or more of set screws, snap rings, or a press fit. As shown in
In some embodiments, modular downhole packer system 100 may include floating end anchor 151. Floating end anchor 151 may mechanically couple to tubular 107 and may, as discussed below, provide for a surface against which seal extension 135 of second end coupler 127 may fluidly seal, thus defining the other end of interior cavity 129 of packer element assembly 121.
In some embodiments, as shown in
In some embodiments, one or more seals 141 may be positioned between inner sealing surface 137 and outer sealing surface 155. For example and without limitation, as shown in
In some embodiments, floating end anchor 151 may include compression seal 157. Compression seal 157 may be positioned about tubular 107 within seal pocket 159 formed in compression seal housing 153. In some embodiments, floating end anchor 151 may further include compression seal backup rings 161 positioned about tubular 107 abutting each end of compression seal 157. Seal backup rings 161 may, in some embodiments, engage compression seal 157 and may, without being bound to theory, reduce extrusion of compression seal 157 during actuation of compression seal 157 as further described below.
In some embodiments, floating end anchor 151 may include anchor body 163. Anchor body 163 may be tubular or annular and may be positioned about tubular 107. In some embodiments, anchor body 163 may include external compression threads 165 positioned to engage with inner compression threads 167 formed in seal pocket of compression seal housing 153. Anchor body 163 may thereby be threadedly coupled to compression seal housing 153.
In some embodiments, as anchor body 163 is threadedly tightened to compression seal housing 153, anchor body 163 may engage compression seal 157 (via, in some embodiments, seal backup rings 161) and may longitudinally compress compression seal 157 as shown in
In some embodiments, anchor body 163 may include one or more threaded holes 169 formed radially through anchor body 163 adapted to receive set screws 171. Once compression seal 157 is sufficiently compressed due to threaded engagement between anchor body 163 and compression seal housing 153, set screws 171 may be further threadedly engaged to anchor body 163 until set screws 171 engage against tubular 107, Such engagement may, for example and without limitation, retain anchor body 163 and compression seal housing 153 in position relative to tubular 107 and may reduce or prevent relative rotation between anchor body 163 and compression seal housing 153, thereby maintaining the engagement of compression seal 157 and tubular 107.
In some embodiments, components of modular downhole packer system 100 may be supplied to a wellsite in a disassembled condition excluding tubular 107, which may be sourced from casing already found at the wellsite. In order to assemble modular downhole packer system 100, valve body 101 may be threadedly coupled to tubular 107 at second threaded coupler 105 of valve body 101 using an existing threaded end of tubular 107.
Packer element assembly 121, second end coupler 127, and floating end anchor 151 may also be positioned about tubular 107. Packer element assembly 121 may be threadedly coupled to valve body 101, and floating seal element 131 may be threadedly coupled to packer element assembly 121. Floating end anchor 151 may be positioned such that compression seal housing 153 is positioned within seal extension 135 of floating seal element 131, defined as an unset position as shown in
Anchor body 163 may then be rotated relative to compression seal housing 153 until compression seal 157 is compressed into engagement with tubular 107 and compression seal housing 153. Set screws 171 may then be rotated into engagement with tubular 107, defining an anchored position as shown in
Modular downhole packer system 100 may then be made up into a tubular string such as a casing string using first threaded coupler 103 of valve body 101 and, in some embodiments, the other existing threaded end of tubular 107. Modular downhole packer system 100 may be positioned at a desired position within a wellbore at which time modular downhole packer system 100 may be actuated. In such an actuation operation, fluid pressure from within valve body 101 may be selectively transferred to interior cavity 129 via valve assembly 109 of valve body 101, thereby causing packer element 125 to inflate radially into engagement with a wellbore or surrounding tubular. In some embodiments, as packer element 125 extends radially, second end coupler 127 may move longitudinally along tubular 107. In other embodiments, second end coupler 127 may remain fixed in position along tubular 107.
In some embodiments, as shown in
The foregoing outlines features of several embodiments so that a person of ordinary skill in the art may better understand the aspects of the present disclosure. Such features may be replaced by any one of numerous equivalent alternatives, only some of which are disclosed herein. One of ordinary skill in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments introduced herein. One of ordinary skill in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure and that they may make various changes, substitutions, and alterations herein without departing from the spirit and scope of the present disclosure.
This application is a non-provisional application which claims priority from U.S. provisional application No. 63/138,476, filed Jan. 17, 2021, which is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
63138476 | Jan 2021 | US |