One conventional exhaust gas recirculation (EGR) system for compression ignition internal combustion engines uses two actuators. The first actuator creates a pressure differential in the intake conduit that draws exhaust gas from the exhaust conduit into the intake conduit where it mixes with the intake charge. The second actuator regulates the flow rate of exhaust gas in the exhaust conduit that is drawn into the intake conduit by the first actuator.
Another conventional EGR system employs a single actuator to regulate the flow rate of exhaust gas drawn into the intake conduit from the exhaust conduit. A stationary throttling device is located in the exhaust conduit to promote the flow of exhaust gas into the intake conduit. The negative pressure pre-existing in the intake conduit created during the intake stroke of the engine provides the pressure differential needed to draw the exhaust gas into the intake conduit.
There is provided a modular exhaust gas recirculation assembly including a flow control body, a closing member movably mounted in the manifold conduit between a first position and a second position, and an actuator assembly coupled to the closing member and driving the closing member between the first position and the second position. The flow control body includes a manifold conduit having a recirculation opening, and an inlet conduit in fluid communication with the manifold conduit. The inlet conduit includes a wall common with the manifold conduit. When in the first position, the closing member closes the recirculation opening and blocks fluid communication between the inlet conduit and the manifold conduit. When in the second position, the closing member opens the recirculation opening and permits fluid communication between the inlet conduit and the manifold conduit and creates a pressure differential across the recirculation opening so that fluid is drawn from the inlet conduit into the manifold conduit.
There is also provided an modular exhaust gas recirculation assembly including a flow control body, a closing member, an actuator assembly coupled to the closing member, and an actuator cover. The flow control body includes a manifold conduit including an inner surface defining a fluid passageway, an inlet conduit in fluid communication with the manifold conduit, and an actuator receptacle extending along the flow control body. The actuator assembly is contained in the actuator receptacle. The closing member has a first position where the closing member lies along the inner surface of the manifold conduit and blocks fluid communication between the manifold conduit and the inlet conduit and a second position where the closing member extends into the fluid passageway of the manifold conduit and opens fluid communication between the manifold conduit and the inlet conduit such that when fluid is flowing through the manifold conduit fluid flowing in the inlet conduit is drawn into the manifold conduit. The actuator cover extends over the actuator assembly and is connected to the actuator receptacle to enclose the actuator assembly.
There is yet also provided a method for assembling an exhaust gas recirculation system for an internal combustion engine including an exhaust conduit and an intake conduit. The method includes the step of connecting a modular exhaust gas recirculation assembly in fluid communication with the exhaust conduit and the intake conduit. The exhaust gas recirculation assembly includes a flow control body in fluid communication with the intake conduit and the exhaust conduit, a closing member movably mounted in the flow control body, and a actuator assembly coupled to the closing member.
There is further provided a method for assembling an exhaust gas recirculation system for an internal combustion engine including the steps of forming a flow control body having a manifold conduit, an inlet conduit in fluid communication with the manifold conduit, and an actuator receptacle, mounting a closing member in the flow control body to selectively open and close the fluid communication between the manifold conduit and the inlet conduit, inserting an actuator assembly into the actuator receptacle and coupling the actuator assembly to the closing member, and enclosing the actuator assembly within the actuator receptacle with an actuator cover.
There is further provided a method for assembling an exhaust gas recirculation system for an internal combustion engine including the steps of overmolding a flow control body about an actuator assembly and connecting a closing member to the actuator assembly to selectively open and close the fluid communication between the manifold conduit and the inlet conduit. The flow control body includes a manifold conduit, an inlet conduit in fluid communication with the manifold conduit.
The accompanying drawings, which are incorporated herein and constitute part of this specification, illustrate an embodiment of the invention, and, together with the general description given above and the detailed description given below, serve to explain the features of the invention.
Referring to
The EGR system 10 can be used with the internal combustion engine 18 to control the emissions of the engine 18 when the amount of exhaust gas flowing in the exhaust conduit 14 enters the intake conduit 12 to mix with an intake charge flowing in the intake conduit 12 on route to a combustion chamber (not shown) of the engine 18. The EGR system 10 can be used with a compression-ignition engine or a spark-ignition engine. Preferably, the EGR system 10 is used in a compression-ignition engine.
Referring to
A closing member 34 is movably mounted in the manifold conduit 24. The closing member 34 performs two functions. First, it opens and closes the recirculation opening 28 to selectively open and close the fluid communication between the intake conduit 12 and the exhaust conduit 14. Second, after the closing member 34 opens the fluid communication between the intake conduit 12 and the exhaust conduit 14, the closing member 34 meters the flow rate of exhaust gas that passes from the exhaust conduit 14 to the intake conduit 12.
An actuator assembly 36 includes a servo assembly 38 drivingly coupled to the closing member 34 and a servo controller 40 electrically connected to the servo assembly 38 and a return spring 42 biasing the closing member 34 toward the recirculation opening 28. Preferably, the servo assembly 38 includes an electric motor (not shown) drivingly coupled to a gear train (not shown). The servo controller 40 generates a actuator signal and sends it to the servo assembly 38 to move the closing member 34 from the first position to the second position. Preferably, the servo controller 40 follows a closed-loop algorithm using an engine performance data input and a door position input. Alternatively, the servo controller 40 can follow an open-loop algorithm and additional inputs can be provided to the servo controller 40, such as transmission gear selection and vehicle inclination.
Comparing
When in the first position, as shown in
When in the second position, as shown in
During the intake cycle of the engine, the exhaust conduit 14 has a low pressure region LPE that is approximately equal to ambient atmospheric pressure. The closing member 34 further includes an operative surface 50 that causes the fluid flowing in the fluid passageway 32 to separate from a portion of the inner surface 30 adjacent the recirculation opening 28. This separation creates the intake low pressure region LPI. When the closing member 34 initially extends into the fluid passageway 32 (e.g., 10 degrees relative to a plane containing the recirculation opening), partial separation of the fluid occurs and the value of the intake low pressure region LPI is less than a maximum value. When the closing member 34 extends far enough into the fluid passageway 32 to cause full separation (e.g., 35 degrees relative to a plane containing the recirculation opening), then the value of the intake low pressure region LPI reaches a maximum value. Thus, the extent to which of the operative surface 50 reaches into the fluid passageway 32 controls the value of the intake low pressure region LPI and, thus, the pressure differential between the exhaust low pressure region LPE and the intake low pressure region LPI during the intake cycle of the engine 18.
The operative surface 50 is, preferably, configured in a shape different than the boundary shape of the inner surface 30 of the fluid passageway 32 to provide an adequate value for the intake low pressure region LPI and to promote mixing of the exhaust gas from the exhaust conduit 14 with the fluid flowing in the fluid passageway 32. Preferably, the exhaust gas is mixed with the fluid flowing in the fluid passageway 32 so that each combustion chamber (not shown) of the engine receives at least some of the exhaust gas passing through the recirculation opening 28. The selected geometry must balance with the capacity of the actuator assembly 36 and the effect the operative surface 50 has on flow restriction in the intake conduit 12. The actuator assembly 36 should be of a configuration capable of generating sufficient force to move the closing member 34 between the first position and second position against the resistance created by the fluid flowing in the fluid passageway 32 against the closing member 34 while simultaneously requiring a minimum packaging volume. It is preferred that the restriction of the fluid passageway 32 by the closing member 34 minimally affect the fluid flowing through the fluid passageway 32 to the combustion chamber during the intake cycle and, thus, the power production of the engine 18.
The geometry of the operative surface 50 and relationship between the angle of the closing member 34 and the amount of exhaust gas that enters the fluid passageway 32 are described in a U.S. patent application filed on even date entitled “Apparatus and Method for Exhaust Gas Flow Management of an Exhaust Gas Recirculation System”, U.S. application Ser. No. 10/290,497, which application is hereby incorporated by reference.
The pressure of the fluid flowing in the intake conduit 12 is approximately equal to ambient atmospheric pressure if the engine is a normally aspirated engine and is greater than ambient atmospheric pressure if the engine is a turbocharged engine. As the closing member 34 moves away from the recirculation conduit 22 and toward the second position (FIG. 3), the intake low pressure region LPI is created adjacent the recirculation opening 28 and has a value slightly less than that of the pressure of the fluid flowing in the intake conduit 12. As the closing member 34 moves farther into the fluid passageway toward the second position, the value of the intake low pressure region LPI approaches vacuum pressure. The pressure differential between the intake low pressure region LPI in the intake conduit 12 and the exhaust low pressure region LPE in the recirculation conduit 22 draws exhaust gas from the exhaust conduit 14 into the intake conduit 12 through the recirculation opening 28. The amount of exhaust gas that enters the intake conduit 12 is proportional to the pressure differential between the intake low pressure region LPI and the exhaust low pressure region LPE. The pressure value of the exhaust low pressure region LPE remains relatively steady over time. Thus, a change in the flow rate of exhaust gas in the intake conduit 12 can be varied by varying the pressure value of the intake low pressure region LPI.
The extent to which of the closing member 34 reaches into the fluid passageway controls the value of the intake low pressure region LPI and, thus, the pressure differential between the intake low pressure region LPI and the exhaust low pressure region LPE during the intake cycle of the engine. When the closing member 34 first opens, the closing member 34 reaches into the fluid passageway 32 by a small amount and the intake low pressure region LPI has a value only slightly less than that of the exhaust low pressure region LPE. Accordingly, the pressure differential is small and the flow rate of exhaust gas through the recirculation opening 28 and into the intake conduit 12 is correspondingly small. The pressure value of the intake low pressure region LPI, and thus the pressure difference and flow rate of exhaust gas passing through the recirculation opening 28, increases as the closing member 34 reaches farther into the fluid passageway 32 of the manifold conduit 24. Therefore, closing member 34 opens fluid communication between the intake conduit 12 and the exhaust conduit 14 and the closing member 34 also meters the amount of exhaust gas passing into the intake conduit 12.
The flow control body 116 includes a manifold conduit 124 and an inlet conduit 126 in fluid communication with the manifold conduit 124. As described above with reference to
The manifold conduit 124 includes a recirculation opening 128 (in phantom in
Referring to
A common wall 160 forms a portion of the manifold conduit 124 and a portion of the inlet conduit 126. A compact size can be achieved for the flow control body 116 because the inlet conduit 126 extends parallel to the manifold conduit 124 and the common wall 160 is shared by the inlet conduit 126 and the manifold conduit 124. This compact size can improve the packaging efficiency of the EGR system around the engine and within the engine compartment.
Referring to
A closing member 134 is movably mounted in the manifold conduit 124 between a first position where the closing member 134 seals the recirculation opening 128 and blocks fluid communication between the intake conduit and the exhaust conduit (e.g., 12 and 14 of
Referring to
Referring to
Referring to
Other arrangements are possible to minimize disturbance by the closing member 134 of the fluid flowing through the fluid passageway 132 when the closing member 134 is in the first position, such as, providing a recess in the inner surface 130 to receive the closing member 134, as described with reference to
Referring to
The actuator assembly 136 drives the rotary shaft 144 and moves the closing member 134 between the first position and the second position against the bias of the return spring 142. As shown in
Referring to
The servo controller generates a actuator signal and sends it to the servo assembly 138 to move the closing member 134 from the first position to the second position. Preferably, the servo controller follows a closed-loop algorithm using an engine performance data input and a door position input. Alternatively, the servo controller can follow an open-loop algorithm and additional inputs can be provided to the servo controller, such as transmission gear selection and vehicle inclination.
As shown in
While the present invention has been disclosed with reference to certain embodiments, numerous modifications, alterations and changes to the described embodiments are possible without departing from the sphere and scope of the present invention, as defined in the appended claims. Accordingly, it is intended that the present invention not be limited to the described embodiments, but that it has the full scope defined by the language of the following claims, and equivalents thereof.
This application claims priority of provisional application No. 60/337,784 field on Nov. 8, 2001.
Number | Name | Date | Kind |
---|---|---|---|
3741179 | Vartanian | Jun 1973 | A |
3915134 | Young et al. | Oct 1975 | A |
4094285 | Oyama et al. | Jun 1978 | A |
4171689 | Eheim | Oct 1979 | A |
4196708 | May et al. | Apr 1980 | A |
4214562 | Mowbray | Jul 1980 | A |
4222356 | Ueda et al. | Sep 1980 | A |
4230080 | Stumpp et al. | Oct 1980 | A |
4237837 | Toda et al. | Dec 1980 | A |
4279235 | Flaig et al. | Jul 1981 | A |
4279473 | Yamana | Jul 1981 | A |
4280470 | Ueda | Jul 1981 | A |
4286567 | Ueda | Sep 1981 | A |
4295456 | Nomura et al. | Oct 1981 | A |
4329965 | Ueda et al. | May 1982 | A |
4364369 | Nomura et al. | Dec 1982 | A |
4690119 | Makino et al. | Sep 1987 | A |
5305720 | Ando et al. | Apr 1994 | A |
5333456 | Bollinger | Aug 1994 | A |
5542711 | Vaudry | Aug 1996 | A |
5596966 | Elder | Jan 1997 | A |
5785034 | Moedinger et al. | Jul 1998 | A |
5937834 | Oto | Aug 1999 | A |
5937835 | Turner et al. | Aug 1999 | A |
6102016 | Sitar et al. | Aug 2000 | A |
6135415 | Kloda et al. | Oct 2000 | A |
6382195 | Green et al. | May 2002 | B1 |
6435169 | Vogt | Aug 2002 | B1 |
6494041 | Lebold | Dec 2002 | B1 |
6575149 | Gagnon | Jun 2003 | B2 |
20020185116 | Veinotte | Dec 2002 | A1 |
20030084887 | Veinotte | May 2003 | A1 |
20030116146 | Fensom et al. | Jun 2003 | A1 |
Number | Date | Country |
---|---|---|
0 840 000 | May 1998 | EP |
11 294267 | Oct 1999 | JP |
2000 045879 | Feb 2000 | JP |
Number | Date | Country | |
---|---|---|---|
20030111066 A1 | Jun 2003 | US |
Number | Date | Country | |
---|---|---|---|
60337784 | Nov 2001 | US |