The first firearms use began in the 14th century and were essentially miniature cannons small enough to be held by a man. These firearms required a match, spark, or ember to light a flash pan that held primer powder to be able to fire these primitive firearms. In time, a matchlock mechanism was developed which lowered a match to the flash pan of the firearm when a trigger was pulled. This allowed the user to hold and aim the gun while waiting for it to fire. Even though the matchlock mechanism allowed the user to aim the firearm, an external fire source to light the matchlock was still necessary to ignite gunpowder when the trigger was pulled. The flintlock mechanism improved upon the matchlock because the flintlock mechanism created a spark, on demand, when the trigger was pulled to ignite the primer powder in the flash pan. The problem with the flintlock mechanism is that the mechanism often misfired in inclement weather and failed to ignite wet powder making the reliability of firearms with a flintlock mechanism questionable. This prompted the creation of a percussion cap. Percussion caps contained a dry mixture of chemicals which were explosively sensitive to shock (e.g., from a falling hammer on a firearm) and allowed a user to fire reliable regardless of the weather. Percussion caps, containing a shock-sensitive explosive, ignited upon the impact of a hammer that was released when the trigger was pulled which allowed fire created by the explosion to ignite gunpowder within the firearm and fire a bullet.
As firearms improved so did the ammunition used with the firearms. Ammunition like that used in a cannon was round (e.g., a ball) and advanced from stone to iron and later to lead. Cannon balls were installed in a barrel and rammed into a seated position on top of gunpowder in the cannon, or on a wad between the gunpowder and the cannon ball. These cannon balls were wildly inaccurate because of an unpredictable spin that occurred when the cannon balls were fired. Firearms of the era were also “smoothbore” (e.g., lacking grooves) which caused unpredictable spin on a lead ball or cannon ball. To improve accuracy, helical rifle grooves were machined into the inside of barrels in both cannons and firearms. Machining these grooves was called rifling and was not initially very popular because rifling made cleaning barrels a substantially more difficult task. Refinements in gunpowder technology and the development of ammunition cartridges increased the popularity of rifled barrels because shooters benefited from the accuracy improvements while also reducing the work associated with cleaning a firearm barrel.
The development of an ammunition cartridge, which contained all the components necessary to fire a projectile from a firearm in one object, revolutionized firearms technology. Ammunition cartridges include a metallic case, preferably brass, fitted to accept a primer, gunpowder, and a projectile. More commonly, an ammunition cartridge is referred to as a “bullet” even though the projectile, the bullet, is but one element of an ammunition cartridge. One of the reasons for this clarification is that ammunition cartridges are made in different sizes. The sizes are often labeled by the diameter of the bullet also referred to as a caliber. Caliber was originally used to define the diameter of a barrel bore and now it is often used to describe bullets corresponding to the bore diameter. For example, a brass case may be a particular size, provide a primer pocket for receiving a primer of a particular size, have an internal volume of a specific size to receive gun powder, and may further accept a bullet of a particular caliber typically measured in tenths or thousandths of an inch in the United States and using metric diameter measurements in countries that use metric measurements.
The development of ammunition cartridges further improved the moving of ammunition into a chamber of a firearm and the speed of firing. Two devices were created to hold ammunition in a usable position within a firearm, a clip and a magazine. A clip groups ammunition cartridges together, but has no moving parts. Firearms that use clips contain mechanisms to move the ammunition cartridge from the clip and inserts the round into a firing position in the chamber. The magazine, often mistakenly identified as a clip, aids in not only storing rounds but also moving the round into firing position by use of spring tension, pushing magazines towards a top of the magazines. The dimensions of magazines depend on many ammunition cartridge and firearm characteristics, including the caliber of bullet, the length of the firearm frame, the angle of magazine port, the number of ammunition rounds, the firearm retrieval site, the type of bolt, the size and shape of the slide, the size and shape of the magazine port, the weight preferences etc. The dimensional specifications of magazines makes modularity extremely difficult in that a magazine designed for a particular firearm will only operate within that particular firearm model. Any seemingly minor change in the dimensions of a magazine or a of a slide from one model to another renders such magazine useless to any other firearm model even if it contains ammunition of the same caliber.
To accommodate for different dimensional specifications for magazines, firearms manufacturers have created different models of firearms that are designed for shooters with different grip preferences or hand sizes. For example, a user may prefer a wider grip, while another likes a longer grip, another may wish to conceal a and desire a smaller grip profile while others may desire a magazine that holds a desired number of ammunition cartridges. All of these alterations change the dimension of the firearm magazine and in so doing changes the mechanisms for receiving the cartridges stored in the magazine.
To further explain using an automatic pistol, a pistol can be grouped into two major parts an upper portion referred to herein as an upper or slide portion and a lower or frame portion. In some embodiments, the slide portion may include a slide, barrel, guide rod, recoil spring, firing pin, ammunition receiving port, receiver rail, and ammunition ejector port to name a few. In some embodiments, the frame portion may include trigger group, grip, magazine receiver port, magazine, magazine ejector button, ejector button, connector rail, disassembly pin and lever, and etc. Both the slide portion and frame portions are interconnected and interrelated. A receiver rail in the frame and a connector rail in the slide must both be aligned or a slider portion cannot connect with a frame portion. If a slide removal pin is not aligned correctly, the pistol could not be taken apart (field stripped) to allow for a more thorough cleaning. A trigger assembly in the frame portion does not work if it does not interact with the firing pin in the slide portion. Finally, the ammunition feed port where a magazine offloads a bullet into a receiving chamber of the firearm cannot function properly if not aligned correctly. In other words, if a magazine is not precisely positioned within a firearm, the firearm will not successfully load an ammunition cartridge to be fired. Further, magazines with dimensional specifications that include even very minor differences cannot be used in a firearm for which the magazine is not intended because ammunition cartridges will not properly exit the ammunition feed port in the magazine into the chamber of the firearm due to misalignment of the magazine and the firearm. Any of these misalignments may not only keep the pistol from firing properly but may also cause misfires or cause ammunition cartridges to detonate at an improper location putting both the user and any bystanders in mortal danger.
It is, therefore, one object of this disclosure to describe an example of a modular portion of a firearm to receive a magazine associated with the lower portion of a firearm and combine it with an upper portion of a firearm that is not normally compatible with the lower portion while providing satisfactory operation of the firearm. It is another object of this disclosure to provide a grip module which provides an adapter that allows a magazine that is not intended for a use with a particular slide portion to be properly installed and fitted to the particular slide portion while providing satisfactory operation of the firearm.
Disclosed herein is a modular firearm frame device that includes a receiver rail which mechanically interacts with a firearm slide mechanically sized to operate on a first firearm model. The modular fire frame also includes a magazine port which mechanically accepts a magazine mechanically sized to receive a magazine from a second firearm model, different from the first firearm model. Disposed within the magazine port is an adapter which aligns the magazine within the magazine port such that the magazine holds an ammunition cartridge in a position within the modular firearm frame device where operation of the slide on the modular firearm frame device causes the ammunition cartridge to be loaded into a chamber of a firearm associated with the modular firearm frame device.
Also disclosed is a modular firearm frame device comprising a receiver rail and a magazine port. The receiver rail is mechanically sized to accept a slide from a first handgun. The magazine port is sized to operably receive a magazine that is inoperable in the first handgun. Furthermore, an adapter is disposed within the magazine port which aligns the magazine within the magazine port such that the magazine holds an ammunition cartridge in a position within the modular firearm frame device where operation of the slide on the modular firearm frame device causes the ammunition cartridge to be loaded into a chamber of a firearm associated with the modular firearm frame device.
Non-limiting and non-exhaustive implementations of the disclosure are described with reference to the following figures, wherein like reference numerals refer to like parts throughout the various views unless otherwise specified. Advantages of the disclosure will become better understood with regard to the following description and accompanying drawings where:
The disclosure provides novel modular firearm frames which may be used with various types of firearms including semi-automatic pistols, modern sporting rifles, automatic rifles, semi-automatic rifles and other firearms.
In the following description of the disclosure, reference is made to the accompanying drawings, which form a part hereof, and in which is shown by way of illustration specific implementations in which the disclosure is may be practiced. It is understood that other implementations may be utilized and structural changes may be made without departing from the scope of the disclosure.
In the following description, for purposes of explanation and not limitation, specific techniques and embodiments are set forth, such as particular techniques and configurations, in order to provide a thorough understanding of the device disclosed herein. While the techniques and embodiments will primarily be described in context with the accompanying drawings, those skilled in the art will further appreciate that the techniques and embodiments may also be practiced in other similar devices.
Reference will now be made in detail to the exemplary embodiments, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers are used throughout the drawings to refer to the same or like parts. It is further noted that elements disclosed with respect to particular embodiments are not restricted to only those embodiments in which they are described. For example, an element described in reference to one embodiment or figure, may be alternatively included in another embodiment or figure regardless of whether or not those elements are shown or described in another embodiment or figure. In other words, elements in the figures may be interchangeable between various embodiments disclosed herein, whether shown or not.
Described below is a firearm grip module that includes an adapter which itself includes adapter elements, and adapter sub-elements, as are shown in the figures. The adapter shown is not intended to be exclusive but, rather, illustrate examples of a modular firearm adapter that may allow interaction between a slide of a first type or model of firearm and a frame of a second type of firearms that without adaptive alterations are not functionally complimentary. These changes may include size, angle, ramps and contours of a magazine receiving port, apertures for receiving an ejector pin and a disassemble pin, and or notches for a slide catch, a rear cover plate and a magazine seat etc. Adaptive alterations allow a user to take advantage of the benefits of a slide of a first firearm along with the benefits of a frame of a second firearm.
Magazine receiving port 140 is located at the proximal end of modular firearm adapter 100 and is sized to accommodate the insertion of an ammunition magazine. Ammunition magazines have many different sizes and shapes to accommodate size and shape of the of the firearm and ammunition cartridges. Disposed within magazine receiving port 140 may be adapters (not seen because of perspective but shown in
Modular firearm adapter 100 may implement adapters, adapter elements, and adapter sub elements within magazine receiving port 140 to center a magazine that is intended for a first model of firearm while connecting to a slide portion from a second model of firearm. In one example, a first firearm may be a standard sized model while a second firearm may be a compact sized model. Even though the first firearm and the second firearm shoot the same ammunition cartridge, a magazine from the first firearm and the second firearm are not interchangeable due to the relative sizes of the firearms. Modular firearm adapter 100 replaces a frame of the first firearm to allow use of a standard sized slide with a magazine from the second firearm which is smaller and more suitable for concealed carry applications. In this manner, a user may purchase the first firearm in a standard size, install modular firearm adapter 100, and have a functional concealed carry sized firearm, securing a smaller concealed carry sized magazine for the second firearm without the need to buy the entire second firearm. Essentially, modular firearm adapter 100 allows a user to assemble a concealable smaller firearm that uses a smaller magazine from a standard sized firearm. An adapter included in magazine port 140 compensates for magazine size differences between the magazine for the first firearm and the magazine for the second firearm to allow the magazine for the second firearm to fit and operate with slide portion of the first firearm.
Ramp 325A as an adapter element may be comprised of adapter sub-elements that include spine 310A a wedge (not seen because of perspective) and tail 315A. Tail 315A may be connected to both spine 310A and a wedge. Spine 310A is the distal end of the ramp 325A. Spine 310A extends off the sides of receiving port 305 and runs substantially parallel with the length of receiving port 305. Substantially parallel in this context means plus or minus 25 degrees. The portion of spine 310A with the greatest extension off the side of receiving port 305 is located near the top of receiving port 305 and the portion of spine 310A that extends the least off the side of receiving port 305 is toward the bottom end of receiving port 305. As a result, spine 310A slopes downwards from top to bottom of receiving port 305.
The wedge portion of the ramp 325A, not seen in this figure because of the perspective but an example is shown in
Adapter element may also include ramp 325B that may further include adapter sub-elements that include spine 310B a wedge (not seen because of perspective but shown in
The wedge, an adapter sub-element portion of the ramp 325B, not seen in this figure because of perspective, is connected to spine 310B and extends off of the side wall of receiving port 305 towards a center line of firearm adapter 300. The portion of the wedge with the greatest extension off of the side wall of the receiving port 305 is where the wedge connects to spine 310B and the least extension is located towards the proximal end of receiving port 305 near the top of receiving port 305. As a result, the wedge portion of the ramp extends at the highest point at spine 310B attachment and lessens as the wedge nears the proximal portion of receiving port 305. The wedge may run substantially perpendicular to spine 310B. Substantially perpendicular in this context means plus or minus 25 degrees. Also, a wedge may curve from the point where the wedge attaches to spine 310B and curves downward and proximal until the lowest point of extension of the wedge off the sidewall wall of the receiving port 305. Tail 315B connects to spine 310B and wedge and the extension of spine 310B gradually decreases towards the bottom part of receiving port 305. Tail 315B connects to the proximal side of spine 310B but does not extend from receiving port 305 to a height of spine 310B. Thus, tail 315B connects to the side of spine 310B at less than the full extension but more than halfway up the extension of spine 310B. Tail 315B alternatively, extends off of receiving port at the same height as the wedge and decreases and maintains the same height of the wedge. Even though tail 315B does not extend out as much as spine 310B tail 315B decreases at the same angle and the extension of tail 315B ends before the extension of the spine 310B ends at the downward portion of spine 310B.
The ramp 425B may include spine 410B, wedge 415B and a tail, not seen because of perspective. Spine 410B extends substantially parallel to a length (top to bottom) of the receiving port 405. Substantially parallel in this context means plus or minus 25 degrees. Wedge 415B extends substantially perpendicularly to spine 410B towards the proximal end of receiving port 405 and may be also curve in a downward direction. Substantially perpendicular in this context means plus or minus 25 degrees. The tail connects to wedge 415B and spine 410B and follows the slope of both spine 410B and wedge 415B. Firearm adapter 400 may further include trigger port 440, where a trigger may be placed and may be located between receiving port 405 and trigger group seat 430. Trigger group seat 430 is located proximally to rod guide 435 and trigger port 440.
Magazine ejector button aperture 730 may be provided with a button that releases a magazine from modular firearm adapter 700 and may extend through an aperture on both the left and right side of modular firearm adapter 700. Depending on the type and the style of firearm a serial number is displayed on the firearm. In cases where the firearm is displayed on a trigger group unit, view port 735 is placed on the right side of modular firearm adapter 700 in this embodiment. However, a serial number may be placed in various locations as required by the United States Department of Alcohol, Tobacco, and Firearms. Adapter 770 is implemented as a ramp, in this embodiment, and is located on the inside of magazine receiving port 760. Adapter 770 is positioned to allow a magazine that is not intended (e.g., smaller) to function with a particular slide to be positioned to operate correctly with the particular slide. In this case, adapter 770 further includes adapter sub-element such as a spine 740, a wedge 745 and a tail 750. Spine 740 runs substantially parallel with the length of receiving port 760. Substantially parallel in this context means plus or minus 25 degrees. Wedge 745, on the other hand, extends from spine 740 proximally in a substantially perpendicular direction and may contain a downward curve. Substantially perpendicular in this context means plus or minus 25 degrees. Tail 750 is connected to both spine 740 and wedge 745 and the extension of tail 750 off of receiving port 760 decreases downwardly and proximally.
Proximally to rod guide 720 is trigger group seat 755 this depression may seat a bracket or another portion of a trigger group or a rail that may aid in the attachment of a firearm slide. Proximally to trigger group seat 755 and distally to magazine receiving port 760 is trigger port 765. Trigger port 765 allows a trigger to maintain attachment to the trigger group while allowing access to the user to pull when firing the firearm. Proximally to trigger port 765 is magazine receiving port 760. The angle of magazine receiving port and a position of the ramp extending off of the side wall of the ramp allows for the reception of a particular ammunition magazine that is, for example, smaller dimensionally than a magazine that is intended to be used with a slide connectable to modular firearm adapter 700.
Disposed within magazine receiving port 830 may be an adapter, a ramp in this example, that may include adapter sub-elements such as spine 820, tail 825, and a wedge (not shown because of perspective but an example shown in
The foregoing description has been presented for purposes of illustration. It is not exhaustive and does not limit the invention to the precise forms or embodiments disclosed. Modifications and adaptations will be apparent to those skilled in the art from consideration of the specification and practice of the disclosed embodiments. For example, components described herein may be removed and other components added without departing from the scope or spirit of the embodiments disclosed herein or the appended claims.
Other embodiments will be apparent to those skilled in the art from consideration of the specification and practice of the disclosure disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.
This application is a continuation of pending U.S. patent application Ser. No. 17/129,690, filed Dec. 21, 2020 which claims the benefit of U.S. Provisional Application No. 62/950,633, filed Dec. 19, 2019, which is incorporated herein by reference in its entirety, including but not limited to those portions that specifically appear hereinafter, the incorporation by reference being made with the following exception: In the event that any portion of the above-referenced applications are inconsistent with this application, this application supersedes said above-referenced applications.
Number | Date | Country | |
---|---|---|---|
62950633 | Dec 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17129690 | Dec 2020 | US |
Child | 18094937 | US |