Modular fixed cutter earth-boring bits, modular fixed cutter earth-boring bit bodies, and related methods

Information

  • Patent Grant
  • 8789625
  • Patent Number
    8,789,625
  • Date Filed
    Tuesday, October 16, 2012
    12 years ago
  • Date Issued
    Tuesday, July 29, 2014
    10 years ago
Abstract
A modular fixed cutter earth-boring bit body includes a blade support piece and at least one blade piece fastened to the blade support piece. A modular fixed cutter earth-boring bit and methods of making modular fixed cutter earth-boring bit bodies and bits also are disclosed.
Description
TECHNICAL FIELD OF THE INVENTION

The present invention relates, in part, to improvements to earth-boring bits and methods of producing earth-boring bits. The present invention further relates to modular earth-boring bit bodies and methods of forming modular earth-boring bit bodies.


BACKGROUND OF THE TECHNOLOGY

Earth-boring bits may have fixed or rotatable cutting elements. Earth-boring bits with fixed cutting elements typically include a bit body machined from steel or fabricated by infiltrating a bed of hard particles, such as cast carbide (WC+W2C), macrocystalline or standard tungsten carbide (WC), and/or sintered cemented carbide with a copper-base alloy binder. Conventional fixed cutting element earth-boring bits comprise a one-piece bit body with several cutting inserts in insert pockets located on the bit body in a manner designed to optimize cutting. It is important to maintain the inserts in precise locations to optimize drilling efficiency, avoid vibrations, and minimize stresses in the bit body in order to maximize the life of the earth-boring bit. The cutting inserts are often based on highly wear resistant materials such as diamond. For example, cutting inserts may consist of a layer of synthetic diamond placed on a cemented carbide substrate, and such inserts are often referred to as polycrystalline diamond compacts (PDC). The bit body may be secured to a steel shank that typically includes a threaded pin connection by which the bit is secured to a drive shaft of a downhole motor or a drill collar at the distal end of a drill string. In addition, drilling fluid or mud may be pumped down the hollow drill string and out nozzles formed in the bit body. The drilling fluid or mud cools and lubricates the bit as it rotates and also carries material cut by the bit to the surface.


Conventional earth-boring bit bodies have typically been made in one of the following ways, for example, machined from a steel blank or fabricated by infiltrating a bed of hard carbide particles placed within a mold with a copper based binder alloy. Steel-bodied bits are typically machined from round stock to a desired shape, with topographical and internal features. After machining the bit body, the surface may be hard-faced to apply wear-resistant materials to the face of the bit body and other critical areas of the surface of the bit body.


In the conventional method for manufacturing a bit body from hard particles and a binder, a mold is milled or machined to define the exterior surface features of the bit body. Additional hand milling or clay work may also be required to create or refine topographical features of the bit body.


Once the mold is complete, a preformed bit blank of steel may be disposed within the mold cavity to internally reinforce the bit body matrix upon fabrication. Other transition or refractory metal based inserts, such as those defining internal fluid courses, pockets for cutting elements, ridges, lands, nozzle displacements, junk slots, or other internal or topographical features of the bit body, may also be inserted into the cavity of the mold. Any inserts used must be placed at precise locations to ensure proper positioning of cutting elements, nozzles, junk slots, etc., in the final bit.


The desired hard particles may then be placed within the mold and packed to the desired density. The hard particles are then infiltrated with a molten binder, which freezes to form a solid bit body including a discontinuous phase of hard particles within a continuous phase of binder.


The bit body may then be assembled with other earth-boring bit components. For example, a threaded shank may be welded or otherwise secured to the bit body, and cutting elements or inserts (typically diamond or a synthetic polycrystalline diamond compact (“PDC”)) are secured within the cutting insert pockets, such as by brazing, adhesive bonding, or mechanical affixation. Alternatively, the cutting inserts may be bonded to the face of the bit body during furnacing and infiltration if thermally stable PDC's (“TSP”) are employed.


The bit body and other elements of earth-boring bits are subjected to many forms of wear as they operate in the harsh down hole environment. Among the most common form of wear is abrasive wear caused by contact with abrasive rock formations. In addition, the drilling mud, laden with rock cuttings, causes the bit to erode or wear.


The service life of an earth-boring bit is a function not only of the wear properties of the PDCs or cemented carbide inserts, but also of the wear properties of the bit body (in the case of fixed cutter bits) or conical holders (in the case of roller cone bits). One way to increase earth-boring bit service life is to employ bit bodies made of materials with improved combinations of strength, toughness, and abrasion/erosion resistance.


Recently, it has been discovered that fixed-cutter bit bodies may be fabricated from cemented carbides employing standard powder metallurgy practices (powder consolidation, followed by shaping or machining the green or presintered powder compact, and high temperature sintering). Such solid, one-piece, cemented carbide based bit bodies are described in U.S. Patent Publication No. 2005/0247491.


In general, cemented carbide based bit bodies provide substantial advantages over the bit bodies of the prior art (machined from steel or infiltrated carbides) since cemented carbides offer vastly superior combinations of strength, toughness, as well as abrasion and erosion resistance compared to steels or infiltrated carbides with copper based binders. FIG. 1 shows a typical solid, one-piece, cemented carbide bit body 10 that can be employed to make a PDC-based earth boring bit. As can be observed, the bit body 10 essentially consists of a central portion 11 having holes 12 through which mud may be pumped, as well as arms or blades 13 having pockets 14 into which the PDC cutters are attached. The bit body 10 of FIG. 1 was prepared by powder metal technologies. Typically, to prepare such a bit body, a mold is filled with powdered metals comprising both the binder metal and the carbide. The mold is then compacted to densify the powdered metal and form a green compact. Due to the strength and hardness of sintered cemented carbides, the bit body is usually machined in the green compact form. The green compact may be machined to include any features desired in the final bit body.


The overall durability and performance of fixed-cutter bits depends not only on the durability and performance of the cutting elements, but also on the durability and performance of the bit bodies. It can thus be expected that earth-boring bits based on cemented carbide bit bodies would exhibit significantly enhanced durability and performance compared with bits made using steel or infiltrated bit bodies. However, earth boring bits including solid cemented carbide bit bodies do suffer from limitations, such as the following:


1. It is often difficult to control the positions of the individual PDC cutters accurately and precisely. After machining the insert pockets, the green compact is sintered to further densify the bit body. Cemented carbide bodies will suffer from some slumping and distortion during high temperature sintering processes and this results in distortion of the location of the insert pockets. Insert pockets that are not located precisely in the designed positions of the bit body may not perform satisfactorily due to premature breakage of cutters and/or blades, drilling out-of-round holes, excessive vibration, inefficient drilling, as well as other problems.


2. Since the shapes of solid, one-piece, cemented carbide bit bodies are very complex (see for example, FIG. 1), cemented carbide bit bodies are machined and shaped from green powder compacts utilizing sophisticated machine tools. For example, five-axis computer controlled milling machines. However, even when the most sophisticated machine tools are employed, the range of shapes and designs that can be fabricated are limited due to physical limitations of the machining process. For example, the number of cutting blades and the relative positions of the PDC cutters may be limited because the different features of the bit body could interfere with the path of the cutting tool during the shaping process.


3. The cost of one-piece cemented carbide bit bodies can be relatively high since a great deal of very expensive cemented carbide material is wasted during the shaping or machining process.


4. It is very expensive to produce a one-piece cemented carbide bit body with different properties at different locations. The properties of solid, one-piece, cemented carbide bit bodies are therefore, typically, homogenous, i.e., have similar properties at every location within the bit body. From a design and durability standpoint, it may be advantageous in many instances to have different properties at different locations.


5. The entire bit body of a one-piece bit body must be discarded if a portion of the bit body fractures during service (for example, the breakage of an arm or a cutting blade).


Accordingly, there is a need for improved bit bodies for earth-boring bits having increased wear resistance, strength and toughness that do not suffer from the limitations noted above.





BRIEF DESCRIPTION OF THE FIGURES

The features and advantages of the present invention may be better understood by reference to the accompanying figures in which:



FIG. 1 is a photograph of a conventional solid, one-piece, cemented carbide bit body for earth boring bits;



FIG. 2 is photograph of an embodiment of an assembled modular fixed cutter earth-boring bit body comprising six cemented carbide blade pieces fastened to a cemented carbide blade support piece, wherein each blade piece has nine cutting insert pockets;



FIG. 3 is a photograph of a top view of the assembled modular fixed cutter earth-boring bit body of FIG. 2;



FIG. 4 is a photograph of the blade support piece of the embodiment of the assembled modular fixed cutter earth-boring bit body of FIG. 2 showing the blade slots and the mud holes of the blade support piece;



FIG. 5 is a photograph of an individual blade piece of the embodiment of the assembled modular fixed cutter earth-boring bit body of FIG. 2 showing the cutter insert cutter pockets; and



FIG. 6 is a photograph of another embodiment of a blade piece comprising multiple blade pieces that may be fastened in a single blade slot in the blade support piece of FIG. 4.





BRIEF SUMMARY

Certain non-limiting embodiments of the present invention are directed to a modular fixed cutter earth-boring bit body comprising a blade support piece and at least one blade piece fastened to the blade support piece. The modular fixed cutter earth-boring bit body may further comprise at least one insert pocket in the at least one blade piece. The blade support piece, the at least one blade piece, and any other piece or portion of the modular bit body may independently comprise at least one material selected from cemented hard particles, cemented carbides, ceramics, metallic alloys, and plastics.


Further non-limiting embodiments are directed to a method of producing a modular fixed cutter earth-boring bit body comprising fastening at least one blade piece to a blade support piece of a modular fixed cutter earth boring bit body. The method of producing a modular fixed cutter earth-boring bit body may include any mechanical fastening technique including inserting the blade piece in a slot in the blade support piece, welding, brazing, or soldering the blade piece to the blade support piece, force fitting the blade piece to the blade support piece, shrink fitting the blade piece to the blade support piece, adhesive bonding the blade piece to the blade support piece, attaching the blade piece to the blade support piece with a threaded mechanical fastener, or mechanically affixing the blade piece to the blade support piece.


DESCRIPTION OF CERTAIN NON-LIMITING EMBODIMENTS OF THE INVENTION

One aspect of the present invention relates to a modular fixed cutter earth-boring bit body. Conventional earth boring bits include a one-piece bit body with cutting inserts brazed into insert pockets. The conventional bit bodies for earth boring bits are produced in a one piece design to maximize the strength of the bit body. Sufficient strength is required in a bit body to withstand the extreme stresses involved in drilling oil and natural gas wells. Embodiments of the modular fixed cutter earth boring bit bodies of the present invention may comprise a blade support piece and at least one blade piece fastened to the blade support piece. The one or more blade pieces may further include pockets for holding cutting inserts, such as PDC cutting inserts or cemented carbide cutting inserts. The modular earth-boring bit bodies may comprise any number of blade pieces that may physically be designed into the fixed cutter earth boring bit. The maximum number of blade pieces in a particular bit or bit body will depend on the size of the earth boring bit body, the size and width of an individual blade piece, and the application of the earth-boring bit, as well as other factors known to one skilled in the art. Embodiments of the modular earth-boring bit bodies may comprise from 1 to 12 blade pieces, for example, or for certain applications 4 to 8 blade pieces may be desired.


Embodiments of the modular earth-boring bit bodies are based on a modular or multiple piece design, rather than a solid, one-piece, construction. The use of a modular design overcomes several of the limitations of solid one-piece bit bodies.


The bit bodies of the present invention include two or more individual components that are assembled and fastened together to form a bit body suitable for earth-boring bits. For example, the individual components may include a blade support piece, blade pieces, nozzles, gauge rings, attachment portions, shanks, as well as other components of earth-boring bit bodies.


Embodiments of the blade support piece may include, for example, holes and/or a gauge ring. The holes may be used to permit the flow of water, mud, lubricants, or other liquids. The liquids or slurries cool the earth-boring bit and assist in the removal of dirt, rock, and debris from the drill holes.


Embodiments of the blade pieces may comprise, for example, cutter pockets for the PDC cutters, and/or individual pieces of blade pieces comprising insert pockets.


An embodiment of the modular earth-boring bit body 20 of a fixed cutter earth-boring bit is shown in FIG. 2. The modular earth boring bit body 20 comprises attachment means 21 on a shank 22 of the blade support piece 23. Blades pieces 24 are fastened to the blade support piece 23. It should be noted that although the embodiment of the modular earth boring bit body of FIG. 2 includes the attachment portion 21 and shank 22 as formed in the blade support piece, the attachment portion 21 and shank 22 may also be made as individual pieces to be fastened together to form the part of the modular earth boring bit body 20. Further, the embodiment of the modular earth boring bit body 20 comprises identical blade pieces 24. Additional embodiments of the modular earth boring bit bodies may comprise blade pieces that are not identical. For example, the blade pieces may independently comprise materials of construction including but not limited to cemented hard particles, metallic alloys (including, but limited to, iron based alloys, nickel based alloys, copper, aluminum, and/or titanium based alloys), ceramics, plastics, or combinations thereof. The blade pieces may also include different designs including different locations of the cutting insert pockets and mud holes or other features as desired. In addition, the modular earth boring bit body includes blade pieces that are parallel to the axis of rotation of the bit body. Other embodiments may include blade pieces pitched at an angle, such as 5° to 45° from the axis of rotation.


Further, the attachment portion 21, the shank 22, blade support piece 23, and blade pieces 24 may each independently be made of any desired material of construction that may be fastened together. The individual pieces of an embodiment of the modular fixed cutter earth-boring bit body may be attached together by any method such as, but not limited to, brazing, threaded connections, pins, keyways, shrink fits, adhesives, diffusion bonding, interference fits, or any other mechanical connection. As such, the bit body 20 may be constructed having various regions or pieces, and each region or piece may comprise a different concentration, composition, and crystal size of hard particles or binder, for example. This allows for tailoring the properties in specific regions and pieces of the bit body as desired for a particular application. As such, the bit body may be designed so the properties or composition of the pieces or regions in a piece change abruptly or more gradually between different regions of the article. The example, modular bit body 20 of FIG. 2, comprises two distinct zones defined by the six blade pieces 24 and blade support piece 23. In one embodiment, the blade support piece 23 may comprise a discontinuous hard phase of tungsten and/or tungsten carbide and the blade pieces 24 may comprise a discontinuous hard phase of fine cast carbide, tungsten carbide, and/or sintered cemented carbide particles. The blade pieces 24 also include cutter pockets 25 along the edge of the blade pieces 24 into which cutting inserts may be disposed; there are nine cutter pockets 25 in the embodiment of FIG. 2. The cutter pockets 25 may, for example, be incorporated directly in the bit body by the mold, such as by machining the green or brown billet, or as pieces fastened to a blade piece by brazing or another attachment method. As seen in FIG. 3, embodiments of the modular bit body 20 may also include internal fluid courses 31, ridges, lands, nozzles, junk slots 32, and any other conventional topographical features of an earth-boring bit body. Optionally, these topographical features may be defined by additional pieces that are fastened at suitable positions on the modular bit body.



FIG. 4 is a photograph of the embodiment of the blade support piece 23 of FIGS. 2 and 3. The blade support piece 23 in this embodiment is made of cemented carbides and comprises internal fluid courses 31 and blade slots 41. FIG. 5 is a photograph of an embodiment of a blade piece 24 that may be inserted in the blade slot 41 of blade support piece 23 of FIG. 4. The blade piece 24 includes nine cutter insert pockets 51. As shown in FIG. 6, a further embodiment of a blade piece includes a blade piece 61 comprising several individual pieces 62, 63, 64 and 65. This multi-piece embodiment of the blade piece allows further customization of the blade for each blade slot and allows replacement of individual pieces of the blade piece 61 if a bit body is to be refurbished or modified, for example.


The use of the modular construction for earth boring bit bodies overcomes several of the limitations of one-piece bit bodies, for example: 1) The individual components of a modular bit body are smaller and less complex in shape as compared to a solid, one-piece, cemented carbide bit body. Therefore, the components will suffer less distortion during the sintering process and the modular bit bodies and the individual pieces can be made within closer tolerances. Additionally, key mating surfaces and other features, can be easily and inexpensively ground or machined after sintering to ensure an accurate and precision fit between the components, thus ensuring that cutter pockets and the cutting inserts may be located precisely at the predetermined positions. In turn, this would ensure optimum operation of the earth boring bit during service. 2) The less complex shapes of the individual components of a modular bit body allows for the use of much simpler (less sophisticated) machine tools and machining operations for the fabrication of the components. Also, since the modular bit body is made from individual components, there is far less concern regarding the interference of any bit body feature with the path of the cutting tool or other part of the machine during the shaping process. This allows for the fabrication of far more complex shaped pieces for assembly into bit bodies compared with solid, one-piece, bit bodies. The fabrication of similar pieces may be produced in more complex shapes allowing the designer to take full advantage of the superior properties of cemented carbides and other materials. For example, a larger number of blades may be incorporated into a modular bit body than in a one-piece bit body. 3) The modular design consists of an assembly of individual components and, therefore, there would be very little waste of expensive cemented carbide material during the shaping process. 4) A modular bit body allows for the use of a wide range of materials (cemented carbides, steels and other metallic alloys, ceramics, plastics, etc.) that can be assembled together to provide a bit body having the optimum properties at any location on the bit body. 5) Finally, individual blade pieces may be replaced, if necessary or desired, and the earth boring bit could be put back into service. In the case of a blade piece comprising multiple pieces, the individual pieces could be replaced. It is thus not necessary to discard the entire bit body due to failure of just a portion of the bit body, resulting in a dramatic decrease in operational costs.


The cemented carbide materials that may be used in the blade pieces and the blade support piece may include carbides of one or more elements belonging to groups IVB through VIB of the periodic table. Preferably, the cemented carbides comprise at least one transition metal carbide selected from titanium carbide, chromium carbide, vanadium carbide, zirconium carbide, hafnium carbide, tantalum carbide, molybdenum carbide, niobium carbide, and tungsten carbide. The carbide particles preferably comprise about 60 to about 98 weight percent of the total weight of the cemented carbide material in each region. The carbide particles are embedded within a matrix of a binder that preferably constitutes about 2 to about 40 weight percent of the total weight of the cemented carbide.


In one non-limiting embodiment, a modular fixed cutter earth-boring bit body according to the present disclosure includes a blade support piece comprising a first cemented carbide material and at least one blade piece comprised of a second cemented carbide material, wherein the at least one blade piece is fastened to the blade support piece, and wherein at least one of the first and second cemented carbide materials includes tungsten carbide particles having an average grain size of 0.3 to 10 μm. According to an alternate non-limiting embodiment, one of the first and second cemented carbide materials includes tungsten carbide particles having an average grain size of 0.5 to 10 μm, and the other of the first and second cemented carbide materials includes tungsten carbide particles having an average grain size of 0.3 to 1.5 μm. In yet another alternate non-limiting embodiment, one of the first and second cemented carbide materials includes 1 to 10 weight percent more binder (based on the total weight of the cemented carbide material) than the other of the first and second cemented carbide materials. In still another non-limiting alternate embodiment, a hardness of the first cemented carbide material is 85 to 90 HRA and a hardness of the second cemented carbide material is 90 to 94 HRA. In still a further non-limiting alternate embodiment, the first cemented carbide material comprises 10 to 15 weight percent cobalt alloy and the second cemented carbide material comprises 6 to 15 weight percent cobalt alloy. According to yet another non-limiting alternate embodiment, the binder of the first cemented carbide and the binder of the second cemented carbide differ in chemical composition. In yet a further non-limiting alternate embodiment, a weight percentage of binder of the first cemented carbide differs from a weight percentage of binder in the second cemented carbide. In another non-limiting alternate embodiment, a transition metal carbide of the first cemented carbide differs from a transition metal carbide of the second cemented carbide in at least one of chemical composition and average grain size. According to an additional non-limiting alternate embodiment, the first and second cemented carbide materials differ in at least one property. The at least one property may be selected from, for example, modulus of elasticity, hardness, wear resistance, fracture toughness, tensile strength, corrosion resistance, coefficient of thermal expansion, and coefficient of thermal conductivity.


The binder of the cemented hard particles or cemented carbides may comprise, for example, at least one of cobalt, nickel, iron, or alloys of these elements. The binder also may comprise, for example, elements such as tungsten, chromium, titanium, tantalum, vanadium, molybdenum, niobium, zirconium, hafnium, and carbon up to the solubility limits of these elements in the binder. Further, the binder may include one or more of boron, silicon, and rhenium. Additionally, the binder may contain up to 5 weight percent of elements such as copper, manganese, silver, aluminum, and ruthenium. One skilled in the art will recognize that any or all of the constituents of the cemented hard particle material may be introduced in elemental form, as compounds, and/or as master alloys. The blade support piece and the blade pieces, or other pieces if desired, independently may comprise different cemented carbides comprising tungsten carbide in a cobalt binder. In one embodiment, the blade support piece and the blade piece include at least two different cemented hard particles that differ with respect to at least one property.


Embodiments of the pieces of the modular earth boring bit may also include hybrid cemented carbides, such as, but not limited to, any of the hybrid cemented carbides described in co-pending U.S. patent application Ser. No. 10/735,379, which is hereby incorporated by reference in its entirety.


A method of producing a modular fixed cutter earth-boring bit according to the present invention comprises fastening at least one blade piece to a blade support piece. The method may include fastening additional pieces together to produce the modular earth boring bit body including internal fluid courses, ridges, lands, nozzles, junk slots and any other conventional topographical features of an earth-boring bit body. Fastening an individual blade piece may be accomplished by any means including, for example, inserting the blade piece in a slot in the blade support piece, brazing, welding, or soldering the blade piece to the blade support piece, force fitting the blade piece to the blade support piece, shrink fitting the blade piece to the blade support piece, adhesive bonding the blade piece to the blade support piece (such as with an epoxy or other adhesive), or mechanically affixing the blade piece to the blade support piece. In certain embodiments, either the blade support piece or the blade pieces has a dovetail structure or other feature to strengthen the connection.


The manufacturing process for cemented hard particle pieces would typically involve consolidating metallurgical powder (typically a particulate ceramic and powdered binder metal) to form a green billet. Powder consolidation processes using conventional techniques may be used, such as mechanical or hydraulic pressing in rigid dies, and wet-bag or dry-bag isostatic pressing. The green billet may then be presintered or fully sintered to further consolidate and densify the powder. Presintering results in only a partial consolidation and densification of the part. A green billet may be presintered at a lower temperature than the temperature to be reached in the final sintering operation to produce a presintered billet (“brown billet”). A brown billet has relatively low hardness and strength as compared to the final fully sintered article, but significantly higher than the green billet. During manufacturing, the article may be machined as a green billet, brown billet, or as a fully sintered article. Typically, the machinability of a green or brown billet is substantially greater than the machinability of the fully sintered article. Machining a green billet or a brown billet may be advantageous if the fully sintered part is difficult to machine or would require grinding rather than machining to meet the required final dimensional tolerances. Other means to improve machinability of the part may also be employed such as addition of machining agents to close the porosity of the billet. A typical machining agent is a polymer. Finally, sintering at liquid phase temperature in conventional vacuum furnaces or at high pressures in a SinterHip furnace may be carried out. The billet may be over pressure sintered at a pressure of 300-2000 psi and at a temperature of 1350-1500° C. Pre-sintering and sintering of the billet causes removal of lubricants, oxide reduction, densification, and microstructure development. As stated above, subsequent to sintering, the pieces of the modular bit body may be further appropriately machined or ground to form the final configuration.


One skilled in the art would understand the process parameters required for consolidation and sintering to form cemented hard particle articles, such as cemented carbide cutting inserts. Such parameters may be used in the methods of the present invention.


Additionally, for the purposes of this invention, metallic alloys include alloys of all structural metals such as iron, nickel, titanium, copper, aluminum, cobalt, etc. Ceramics include carbides, borides, oxides, nitrides, etc. of all common elements.


It is to be understood that the present description illustrates those aspects of the invention relevant to a clear understanding of the invention. Certain aspects of the invention that would be apparent to those of ordinary skill in the art and that, therefore, would not facilitate a better understanding of the invention have not been presented in order to simplify the present description. Although embodiments of the present invention have been described, one of ordinary skill in the art will, upon considering the foregoing description, recognize that many modifications and variations of the invention may be employed. All such variations and modifications of the invention are intended to be covered by the foregoing description and the following claims.

Claims
  • 1. A method of producing a modular fixed cutter earth-boring bit body, comprising: providing a blade support piece;providing at least one blade piece, wherein each blade piece comprises at least two individual segments and at least one region adapted to accept a cutting insert, andwherein each blade piece comprises sintered cemented hard particles; andfastening each of the at least two individual segments of the blade piece to the blade support piece.
  • 2. The method of producing a modular fixed cutter earth-boring bit body of claim 1, wherein fastening each of the at least two individual segments of the blade piece comprises at least one of inserting each of the at least two individual segments of the blade piece in a slot in the blade support piece, welding each of the at least two individual segments of the blade piece to the blade support piece, brazing each of the at least two individual segments of the blade piece to the blade support piece, soldering each of the at least two individual segments of the blade piece to the blade support piece, force fitting each of the at least two individual segments of the blade piece to the blade support piece, shrink fitting each of the at least two individual segments of the blade piece to the blade support piece, adhesive bonding each of the at least two individual segments of the blade piece to the blade support piece, attaching each of the at least two individual segments of the blade piece to the blade support piece with a threaded mechanical fastener, and mechanically affixing each of the at least two individual segments of the blade piece to the blade support piece.
  • 3. The method of producing a modular fixed cutter earth-boring bit body of claim 1, wherein the sintered cemented hard particles are cemented carbide.
  • 4. The method of producing a modular fixed cutter earth-boring bit body of claim 1, wherein the blade support piece comprises at least one of cemented hard particles and a steel alloy.
  • 5. The method of producing a modular fixed cutter earth-boring bit body of claim 4, wherein the blade support piece comprises cemented carbide.
  • 6. The method of producing a modular fixed cutter earth-boring bit body of claim 5, wherein the blade support piece consists essentially of cemented carbide.
  • 7. The method of producing a modular fixed cutter earth-boring bit body of claim 1, wherein the blade support piece and the at least one blade piece each independently comprise a cemented carbide including particles of at least one carbide in a binder, wherein the at least one carbide is a carbide of a transition metal selected from titanium, chromium, vanadium, zirconium, hafnium, tantalum, molybdenum, niobium, and tungsten, and wherein the binder comprises at least one metal selected from cobalt, nickel, iron, cobalt alloy, nickel alloy, and iron alloy.
  • 8. The method of producing a modular fixed cutter earth-boring bit body of claim 7, wherein the binder of the cemented carbide of the blade support piece and the binder of the cemented carbide of at least one blade piece each independently further comprise an alloying agent selected from tungsten, titanium, tantalum, niobium, chromium, molybdenum, boron, carbon, silicon, ruthenium, rhenium, manganese, aluminum, copper, vanadium, zirconium, and hafnium.
  • 9. The method of producing a modular fixed cutter earth-boring bit body of claim 7, wherein the carbide is tungsten carbide and the binder comprises cobalt.
  • 10. The method of producing a modular fixed cutter earth-boring bit body of claim 7, wherein providing the at least one blade piece comprises compacting a powdered metal into a green compact, machining the green compact, and sintering the machined green compact to form each of the at least two individual segments.
  • 11. The method of producing a modular fixed cutter earth-boring bit body of claim 10, wherein providing the blade support piece comprises compacting a powdered metal into a green compact, machining the green compact, and sintering the machining green compact.
  • 12. The method of producing a modular fixed cutter earth-boring bit of any claims 10 and 11, wherein the powdered metal comprises a metal carbide powder and a binder powder.
  • 13. The method of producing a modular fixed cutter earth-boring bit body of claim 1, further comprising one or more of grinding or machining at least one cutting insert pocket into each region adapted to accept a cutting insert of each blade piece.
  • 14. The method of producing a modular fixed cutter earth-boring bit body of claim 1, further comprising fastening at least one cutting insert pocket to each region adapted to accept a cutting insert of each blade piece.
  • 15. The method of claim 1, wherein one of the at least two individual segments is replaceable.
  • 16. The method of claim 1, wherein the at least two individual segments are mechanically fastened to the blade support piece.
  • 17. A method of producing a modular fixed cutter earth-boring bit body comprising: providing the modular fixed cutter earth-boring bit body comprising: a blade support piece; andat least one blade piece, wherein each blade piece comprises at least two individual segments, each of the at least two individual segments fastened to the blade support piece, and at least one region adapted to accept a cutting insert, andwherein each of the at least two individual segments comprises sintered cemented hard particles; andfastening a cutting insert to each region adapted to accept a cutting insert of each blade piece.
  • 18. The method of claim 17, further comprising one or more of grinding or machining at least one cutting insert pocket into each region adapted to accept a cutting insert of each blade piece.
  • 19. The method of claim 18, wherein fastening at least one cutting insert to each blade piece comprises fastening a cutting insert into each cutting insert pocket.
  • 20. The method of claim 17, wherein fastening at least one cutting insert further comprises fastening at least one cutting insert pocket to each region adapted to accept a cutting insert of each blade piece, and fastening a cutting insert into each cutting insert pocket.
  • 21. The method of claim 17, wherein one of the at least two individual segments is replaceable.
  • 22. The method of claim 17, wherein the at least two individual segments are mechanically fastened to the blade support piece.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation application claiming priority under 35 U.S.C. §120 to co-pending U.S. patent application Ser. No. 11/737,993, filed on Apr. 20, 2007, which in turn claims priority under 35 U.S.C. §119(e) to U.S. provisional patent application Ser. No. 60/795,290, filed Apr. 27, 2006, now lapsed. Each of the foregoing earlier-filed applications is hereby incorporated by reference herein in its entirety.

US Referenced Citations (538)
Number Name Date Kind
1509438 Miller Sep 1924 A
1530293 Breitenstein Mar 1925 A
1808138 Hogg et al. Jun 1931 A
1811802 Newman Jun 1931 A
1912298 Newman May 1933 A
2054028 Benninghoff Sep 1936 A
2093507 Bartek Sep 1937 A
2093742 Staples Sep 1937 A
2093986 Staples Sep 1937 A
2240840 Fischer May 1941 A
2246237 Benninghoff Jun 1941 A
2283280 Nell May 1942 A
2299207 Bevillard Oct 1942 A
2351827 McAllister Jun 1944 A
2422994 Taylor Jun 1947 A
2819958 Abkowitz et al. Jan 1958 A
2819959 Abkowitz et al. Jan 1958 A
2906654 Abkowitz Sep 1959 A
2954570 Couch Oct 1960 A
3041641 Hradek et al. Jul 1962 A
3093850 Kelso Jun 1963 A
3368881 Abkowitz et al. Feb 1968 A
3471921 Feenstra Oct 1969 A
3482295 Trent Dec 1969 A
3490901 Hachisuka et al. Jan 1970 A
3581835 Stebley Jun 1971 A
3629887 Urbanic Dec 1971 A
3660050 Iler et al. May 1972 A
3757879 Wilder et al. Sep 1973 A
3762882 Grutza Oct 1973 A
3776655 Urbanic Dec 1973 A
3782848 Pfeifer Jan 1974 A
3806270 Tanner et al. Apr 1974 A
3812548 Theuerkaue May 1974 A
3889516 Yankee et al. Jun 1975 A
RE28645 Aoki et al. Dec 1975 E
3936295 Cromwell et al. Feb 1976 A
3942954 Frehn Mar 1976 A
3980549 Grutza Sep 1976 A
3987859 Lichte Oct 1976 A
4009027 Naidich et al. Feb 1977 A
4017480 Baum Apr 1977 A
4047828 Makely Sep 1977 A
4094709 Rozmus Jun 1978 A
4097180 Kwieraga Jun 1978 A
4097275 Horvath Jun 1978 A
4105049 Anderson Aug 1978 A
4106382 Salje et al. Aug 1978 A
4126652 Oohara et al. Nov 1978 A
4128136 Generoux Dec 1978 A
4170499 Thomas et al. Oct 1979 A
4181505 De Vries et al. Jan 1980 A
4198233 Frehn Apr 1980 A
4221270 Vezirian Sep 1980 A
4229638 Lichte Oct 1980 A
4233720 Rozmus Nov 1980 A
4255165 Dennis et al. Mar 1981 A
4270952 Kobayashi Jun 1981 A
4276788 van Nederveen Jul 1981 A
4277106 Sahley Jul 1981 A
4277108 Wallace Jul 1981 A
4306139 Shinozaki et al. Dec 1981 A
4311490 Bovenkerk et al. Jan 1982 A
4325994 Kitashima et al. Apr 1982 A
4327156 Dillon et al. Apr 1982 A
4331741 Wilson May 1982 A
4340327 Martins Jul 1982 A
4341557 Lizenby Jul 1982 A
4351401 Fielder Sep 1982 A
4376793 Jackson Mar 1983 A
4389952 Dreier et al. Jun 1983 A
4396321 Holmes Aug 1983 A
4398952 Drake Aug 1983 A
4423646 Bernhardt Jan 1984 A
4478297 Radtke Oct 1984 A
4497358 Gnadig et al. Feb 1985 A
4499048 Hanejko Feb 1985 A
4499795 Radtke Feb 1985 A
4520882 van Nederveen Jun 1985 A
4526748 Rozmus Jul 1985 A
4547104 Holmes Oct 1985 A
4547337 Rozmus Oct 1985 A
4550532 Fletcher, Jr. et al. Nov 1985 A
4552232 Frear Nov 1985 A
4553615 Grainger Nov 1985 A
4554130 Ecer Nov 1985 A
4562990 Rose Jan 1986 A
4574011 Bonjour et al. Mar 1986 A
4579713 Lueth Apr 1986 A
4587174 Yoshimura et al. May 1986 A
4592685 Beere Jun 1986 A
4596694 Rozmus Jun 1986 A
4597456 Ecer Jul 1986 A
4597730 Rozmus Jul 1986 A
4604106 Hall Aug 1986 A
4604781 Rankin, III Aug 1986 A
4605343 Hibbs, Jr. et al. Aug 1986 A
4609577 Long Sep 1986 A
4630693 Goodfellow Dec 1986 A
4642003 Yoshimura Feb 1987 A
4646857 Thompson Mar 1987 A
4649086 Johnson Mar 1987 A
4656002 Lizenby et al. Apr 1987 A
4662461 Garrett May 1987 A
4667756 King et al. May 1987 A
4686080 Hara et al. Aug 1987 A
4686156 Baldoni, II et al. Aug 1987 A
4694919 Barr Sep 1987 A
4708542 Emanuelli Nov 1987 A
4722405 Langford Feb 1988 A
4729789 Ide et al. Mar 1988 A
4734339 Schachner et al. Mar 1988 A
4743515 Fischer et al. May 1988 A
4744943 Timm May 1988 A
4749053 Hollingshead Jun 1988 A
4752159 Howlett Jun 1988 A
4752164 Leonard, Jr. Jun 1988 A
4761844 Turchan Aug 1988 A
4779440 Cleve et al. Oct 1988 A
4780274 Barr Oct 1988 A
4804049 Barr Feb 1989 A
4809903 Eylon et al. Mar 1989 A
4813823 Bieneck Mar 1989 A
4831674 Bergstrom et al. May 1989 A
4838366 Jones Jun 1989 A
4861350 Phaal et al. Aug 1989 A
4871377 Frushour Oct 1989 A
4881431 Bieneck Nov 1989 A
4884477 Smith et al. Dec 1989 A
4889017 Fuller et al. Dec 1989 A
4899838 Sullivan et al. Feb 1990 A
4919013 Smith et al. Apr 1990 A
4923512 Timm et al. May 1990 A
4934040 Turchan Jun 1990 A
4943191 Schmidtt Jul 1990 A
4956012 Jacobs et al. Sep 1990 A
4968348 Abkowitz et al. Nov 1990 A
4971485 Nomura et al. Nov 1990 A
4991670 Fuller et al. Feb 1991 A
5000273 Horton et al. Mar 1991 A
5010945 Burke Apr 1991 A
5030598 Hsieh Jul 1991 A
5032352 Meeks et al. Jul 1991 A
5041261 Buljan et al. Aug 1991 A
5049450 Dorfman et al. Sep 1991 A
RE33753 Vacchiano et al. Nov 1991 E
5067860 Kobayashi et al. Nov 1991 A
5075315 Rasmussen Dec 1991 A
5075316 Hubele Dec 1991 A
5080538 Schmidtt Jan 1992 A
5090491 Tibbitts et al. Feb 1992 A
5092412 Walk Mar 1992 A
5094571 Ekerot Mar 1992 A
5096465 Chen et al. Mar 1992 A
5098232 Benson Mar 1992 A
5110687 Abe et al. May 1992 A
5112162 Hartford et al. May 1992 A
5112168 Glimpel May 1992 A
5116659 Glatzle et al. May 1992 A
5126206 Garg et al. Jun 1992 A
5127776 Glimpel Jul 1992 A
5135801 Nyström et al. Aug 1992 A
5161898 Drake Nov 1992 A
5174700 Sgarbi et al. Dec 1992 A
5179772 Braun et al. Jan 1993 A
5186739 Isobe et al. Feb 1993 A
5203513 Keller et al. Apr 1993 A
5203932 Kato et al. Apr 1993 A
5217081 Waldenström et al. Jun 1993 A
5232522 Doktycz et al. Aug 1993 A
5250355 Newman et al. Oct 1993 A
5266415 Newkirk et al. Nov 1993 A
5273380 Musacchia Dec 1993 A
5281260 Kumar et al. Jan 1994 A
5286685 Schoennahl et al. Feb 1994 A
5305840 Liang et al. Apr 1994 A
5311958 Isbell et al. May 1994 A
5326196 Noll Jul 1994 A
5333520 Fischer et al. Aug 1994 A
5335738 Waldenström et al. Aug 1994 A
5338135 Noguchi et al. Aug 1994 A
5346316 Okada et al. Sep 1994 A
5348806 Kojo et al. Sep 1994 A
5354155 Adams Oct 1994 A
5359772 Carlsson et al. Nov 1994 A
5373907 Weaver Dec 1994 A
5376329 Morgan et al. Dec 1994 A
5413438 Turchan May 1995 A
5423899 Krall et al. Jun 1995 A
5429459 Palm Jul 1995 A
5433280 Smith Jul 1995 A
5438108 Umemura et al. Aug 1995 A
5438858 Friedrichs Aug 1995 A
5443337 Katayama Aug 1995 A
5447549 Yoshimura Sep 1995 A
5452771 Blackman et al. Sep 1995 A
5467669 Stroud Nov 1995 A
5474407 Rodel et al. Dec 1995 A
5479997 Scott et al. Jan 1996 A
5480272 Jorgensen et al. Jan 1996 A
5482670 Hong Jan 1996 A
5484468 Östlund et al. Jan 1996 A
5487626 Von Holst et al. Jan 1996 A
5492186 Overstreet et al. Feb 1996 A
5496137 Ochayon et al. Mar 1996 A
5498142 Mills Mar 1996 A
5505748 Tank et al. Apr 1996 A
5506055 Dorfman et al. Apr 1996 A
5518077 Blackman et al. May 1996 A
5525134 Mehrotra et al. Jun 1996 A
5541006 Conley Jul 1996 A
5543235 Mirchandani et al. Aug 1996 A
5544550 Smith Aug 1996 A
5560238 Allebach et al. Oct 1996 A
5560440 Tibbitts Oct 1996 A
5570978 Rees et al. Nov 1996 A
5580666 Dubensky et al. Dec 1996 A
5586612 Isbell et al. Dec 1996 A
5590729 Cooley et al. Jan 1997 A
5593474 Keshavan et al. Jan 1997 A
5601857 Friedrichs Feb 1997 A
5603075 Stoll et al. Feb 1997 A
5609286 Anthon Mar 1997 A
5609447 Britzke et al. Mar 1997 A
5611251 Katayama Mar 1997 A
5612264 Nilsson et al. Mar 1997 A
5628837 Britzke et al. May 1997 A
RE35538 Akesson et al. Jun 1997 E
5635247 Ruppi Jun 1997 A
5641251 Leins et al. Jun 1997 A
5641921 Dennis et al. Jun 1997 A
5662183 Fang Sep 1997 A
5665431 Narasimhan Sep 1997 A
5666864 Tibbitts Sep 1997 A
5672382 Lux Sep 1997 A
5677042 Massa et al. Oct 1997 A
5679445 Massa et al. Oct 1997 A
5686119 McNaughton, Jr. Nov 1997 A
5697042 Massa et al. Dec 1997 A
5697046 Conley Dec 1997 A
5697462 Grimes et al. Dec 1997 A
5704736 Giannetti Jan 1998 A
5712030 Goto et al. Jan 1998 A
5718948 Ederyd et al. Feb 1998 A
5732783 Truax et al. Mar 1998 A
5733078 Matsushita et al. Mar 1998 A
5733649 Kelley et al. Mar 1998 A
5733664 Kelley et al. Mar 1998 A
5750247 Bryant et al. May 1998 A
5753160 Takeuchi et al. May 1998 A
5755033 Gunter et al. May 1998 A
5755298 Langford, Jr. et al. May 1998 A
5762843 Massa et al. Jun 1998 A
5765095 Flak et al. Jun 1998 A
5776593 Massa et al. Jul 1998 A
5778301 Hong Jul 1998 A
5789686 Massa et al. Aug 1998 A
5791833 Niebauer Aug 1998 A
5792403 Massa et al. Aug 1998 A
5803152 Dolman et al. Sep 1998 A
5806934 Massa et al. Sep 1998 A
5830256 Northrop et al. Nov 1998 A
5851094 Stand et al. Dec 1998 A
5856626 Fischer et al. Jan 1999 A
5863640 Ljungberg et al. Jan 1999 A
5865571 Tankala et al. Feb 1999 A
5873684 Flolo Feb 1999 A
5880382 Fang et al. Mar 1999 A
5890852 Gress Apr 1999 A
5893204 Symonds Apr 1999 A
5897830 Abkowitz et al. Apr 1999 A
5899257 Alleweireldt et al. May 1999 A
5947660 Karlsson et al. Sep 1999 A
5957006 Smith Sep 1999 A
5963775 Fang Oct 1999 A
5964555 Strand Oct 1999 A
5967249 Butcher Oct 1999 A
5971670 Pantzar et al. Oct 1999 A
5976707 Grab et al. Nov 1999 A
5988953 Berglund et al. Nov 1999 A
6007909 Rolander et al. Dec 1999 A
6012882 Turchan Jan 2000 A
6022175 Heinrich et al. Feb 2000 A
6029544 Katayama Feb 2000 A
6051171 Takeuchi et al. Apr 2000 A
6063333 Dennis May 2000 A
6068070 Scott May 2000 A
6073518 Chow et al. Jun 2000 A
6076999 Hedberg et al. Jun 2000 A
6086003 Gunter et al. Jul 2000 A
6086980 Foster et al. Jul 2000 A
6089123 Chow et al. Jul 2000 A
6109377 Massa et al. Aug 2000 A
6109677 Anthony Aug 2000 A
6117493 North Sep 2000 A
6135218 Deane et al. Oct 2000 A
6148936 Evans et al. Nov 2000 A
6200514 Meister Mar 2001 B1
6209420 Butcher et al. Apr 2001 B1
6214134 Eylon et al. Apr 2001 B1
6214247 Leverenz et al. Apr 2001 B1
6214287 Waldenström Apr 2001 B1
6217992 Grab Apr 2001 B1
6220117 Butcher Apr 2001 B1
6227188 Tankala et al. May 2001 B1
6228134 Erickson May 2001 B1
6228139 Oskarrson May 2001 B1
6234261 Evans et al. May 2001 B1
6241036 Lovato et al. Jun 2001 B1
6248277 Friedrichs Jun 2001 B1
6254658 Taniuchi et al. Jul 2001 B1
6287360 Kembaiyan et al. Sep 2001 B1
6290438 Papajewski Sep 2001 B1
6293986 Rödiger et al. Sep 2001 B1
6299658 Moriguchi et al. Oct 2001 B1
6302224 Sherwood, Jr. Oct 2001 B1
6326582 North Dec 2001 B1
6345941 Fang et al. Feb 2002 B1
6353771 Southland Mar 2002 B1
6372346 Toth Apr 2002 B1
6374932 Brady Apr 2002 B1
6375706 Kembaiyan et al. Apr 2002 B2
6386954 Sawabe et al. May 2002 B2
6394711 Brosius May 2002 B1
6395108 Eberle et al. May 2002 B2
6402439 Puide et al. Jun 2002 B1
6425716 Cook Jul 2002 B1
6450739 Puide et al. Sep 2002 B1
6453899 Tselesin Sep 2002 B1
6454025 Runquist et al. Sep 2002 B1
6454028 Evans Sep 2002 B1
6454030 Findley et al. Sep 2002 B1
6458471 Lovato et al. Oct 2002 B2
6461401 Kembaiyan et al. Oct 2002 B1
6474425 Truax et al. Nov 2002 B1
6475647 Mendez Acevedo et al. Nov 2002 B1
6499917 Parker et al. Dec 2002 B1
6499920 Sawabe Dec 2002 B2
6500226 Dennis Dec 2002 B1
6502623 Schmitt Jan 2003 B1
6511265 Mirchandani et al. Jan 2003 B1
6544308 Griffin et al. Apr 2003 B2
6546991 Dworog et al. Apr 2003 B2
6551035 Bruhn et al. Apr 2003 B1
6554548 Grab et al. Apr 2003 B1
6562462 Griffin et al. May 2003 B2
6576182 Ravagni et al. Jun 2003 B1
6582126 North Jun 2003 B2
6585064 Griffin et al. Jul 2003 B2
6585864 Fisher et al. Jul 2003 B1
6589640 Griffin et al. Jul 2003 B2
6599467 Yamaguchi et al. Jul 2003 B1
6607693 Saito et al. Aug 2003 B1
6607835 Fang et al. Aug 2003 B2
6620375 Tank et al. Sep 2003 B1
6637528 Nishiyama et al. Oct 2003 B2
6638609 Nordgren et al. Oct 2003 B2
6648068 Dewey et al. Nov 2003 B2
6649682 Breton et al. Nov 2003 B1
6651757 Belnap et al. Nov 2003 B2
6655882 Heinrich et al. Dec 2003 B2
6676863 Christiaens et al. Jan 2004 B2
6682780 Tzatzov et al. Jan 2004 B2
6685880 Engström et al. Feb 2004 B2
6688988 McClure Feb 2004 B2
6695551 Silver Feb 2004 B2
6706327 Blomstedt et al. Mar 2004 B2
6716388 Bruhn et al. Apr 2004 B2
6719074 Tsuda et al. Apr 2004 B2
6723389 Kobayashi et al. Apr 2004 B2
6725953 Truax et al. Apr 2004 B2
6737178 Ota et al. May 2004 B2
6742608 Murdoch Jun 2004 B2
6742611 Illerhaus et al. Jun 2004 B1
6756009 Sim et al. Jun 2004 B2
6764555 Hiramatsu et al. Jul 2004 B2
6766870 Overstreet Jul 2004 B2
6767505 Witherspoon et al. Jul 2004 B2
6772849 Oldham et al. Aug 2004 B2
6782958 Liang et al. Aug 2004 B2
6799648 Brandenberg et al. Oct 2004 B2
6808821 Fujita et al. Oct 2004 B2
6844085 Takayama et al. Jan 2005 B2
6848521 Lockstedt et al. Feb 2005 B2
6849231 Kojima et al. Feb 2005 B2
6884496 Westphal et al. Apr 2005 B2
6884497 Sulin et al. Apr 2005 B2
6892793 Liu et al. May 2005 B2
6899495 Hansson et al. May 2005 B2
6918942 Hatta et al. Jul 2005 B2
6932172 Dvorachek Aug 2005 B2
6933049 Wan et al. Aug 2005 B2
6948890 Svensson et al. Sep 2005 B2
6949148 Sugiyama et al. Sep 2005 B2
6955233 Crowe et al. Oct 2005 B2
6958099 Nakamura et al. Oct 2005 B2
7014719 Suzuki et al. Mar 2006 B2
7014720 Iseda Mar 2006 B2
7017677 Keshavan et al. Mar 2006 B2
7036611 Radford et al. May 2006 B2
7044243 Kembaiyan et al. May 2006 B2
7048081 Smith et al. May 2006 B2
7070666 Druschitz et al. Jul 2006 B2
7080998 Hall et al. Jul 2006 B2
7090731 Kashima et al. Aug 2006 B2
7101128 Hansson Sep 2006 B2
7101446 Takeda et al. Sep 2006 B2
7112143 Muller Sep 2006 B2
7125207 Craig et al. Oct 2006 B2
7128773 Liang et al. Oct 2006 B2
7147413 Henderer et al. Dec 2006 B2
7152701 Butland et al. Dec 2006 B2
7172142 Taylor et al. Feb 2007 B2
7175404 Kondo et al. Feb 2007 B2
7192660 Ruppi Mar 2007 B2
7204117 Friedrichs Apr 2007 B2
7207401 Dewey et al. Apr 2007 B2
7207750 Annanolli et al. Apr 2007 B2
7216727 Wardley May 2007 B2
7231984 Jaensch Jun 2007 B2
7234541 Scott et al. Jun 2007 B2
7234550 Azar et al. Jun 2007 B2
7235211 Griffo et al. Jun 2007 B2
7238414 Benitsch et al. Jul 2007 B2
7244519 Festeau et al. Jul 2007 B2
7250069 Kembaiyan et al. Jul 2007 B2
7261782 Hwang et al. Aug 2007 B2
7267187 Kembaiyan Sep 2007 B2
7267543 Freidhoff et al. Sep 2007 B2
7270679 Istephanous et al. Sep 2007 B2
7296497 Kugelberg et al. Nov 2007 B2
7350599 Lockwood et al. Apr 2008 B2
7381283 Lee et al. Jun 2008 B2
7384413 Gross et al. Jun 2008 B2
7384443 Mirchandani et al. Jun 2008 B2
7395882 Oldham et al. Jul 2008 B2
7410610 Woodfield et al. Aug 2008 B2
7487849 Radtke Feb 2009 B2
7494507 Dixon Feb 2009 B2
7497280 Brackin et al. Mar 2009 B2
7497396 Splinter et al. Mar 2009 B2
7513320 Mirchandani et al. Apr 2009 B2
7524351 Hua et al. Apr 2009 B2
7556668 Eason et al. Jul 2009 B2
7575620 Terry et al. Aug 2009 B2
7625157 Prichard et al. Dec 2009 B2
7632323 Ganguly et al. Dec 2009 B2
7661491 Kembaiyan et al. Feb 2010 B2
7687156 Fang Mar 2010 B2
7703555 Overstreet Apr 2010 B2
7810588 McClain et al. Oct 2010 B2
7832456 Calnan et al. Nov 2010 B2
7832457 Calnan et al. Nov 2010 B2
7846551 Fang et al. Dec 2010 B2
7887747 Iwasaki et al. Feb 2011 B2
7954569 Mirchandani et al. Jun 2011 B2
8007714 Mirchandani et al. Aug 2011 B2
8007922 Mirchandani et al. Aug 2011 B2
8025112 Mirchandani et al. Sep 2011 B2
8087324 Mirchandani et al. Jan 2012 B2
8109177 Kembaiyan et al. Feb 2012 B2
8137816 Fang et al. Mar 2012 B2
8141665 Ganz Mar 2012 B2
8221517 Mirchandani et al. Jul 2012 B2
8225886 Mirchandani et al. Jul 2012 B2
8272816 Mirchandani Sep 2012 B2
8308096 Mirchandani et al. Nov 2012 B2
8312941 Mirchandani et al. Nov 2012 B2
8318063 Mirchandani et al. Nov 2012 B2
8322465 Mirchandani Dec 2012 B2
20020004105 Kunze et al. Jan 2002 A1
20020175006 Findley et al. Nov 2002 A1
20030010409 Kunze et al. Jan 2003 A1
20030041922 Hirose et al. Mar 2003 A1
20030219605 Molian et al. Nov 2003 A1
20040013558 Kondoh et al. Jan 2004 A1
20040105730 Nakajima Jun 2004 A1
20040228695 Clauson Nov 2004 A1
20040234820 Majagi Nov 2004 A1
20040244540 Oldham et al. Dec 2004 A1
20040245022 Izaguirre et al. Dec 2004 A1
20040245024 Kembaiyan Dec 2004 A1
20050008524 Testani Jan 2005 A1
20050019114 Sung Jan 2005 A1
20050084407 Myrick Apr 2005 A1
20050103404 Hsieh et al. May 2005 A1
20050117984 Eason et al. Jun 2005 A1
20050194073 Hamano et al. Sep 2005 A1
20050211475 Mirchandani et al. Sep 2005 A1
20050247491 Mirchandani et al. Nov 2005 A1
20050268746 Abkowitz et al. Dec 2005 A1
20060016521 Hanusiak et al. Jan 2006 A1
20060032677 Azar et al. Feb 2006 A1
20060043648 Takeuchi et al. Mar 2006 A1
20060060392 Eyre Mar 2006 A1
20060185773 Chiovelli Aug 2006 A1
20060286410 Ahigren et al. Dec 2006 A1
20060288820 Mirchandani et al. Dec 2006 A1
20070082229 Mirchandani et al. Apr 2007 A1
20070102198 Oxford et al. May 2007 A1
20070102199 Smith et al. May 2007 A1
20070102200 Choe et al. May 2007 A1
20070102202 Choe et al. May 2007 A1
20070126334 Nakamura et al. Jun 2007 A1
20070163679 Fujisawa et al. Jul 2007 A1
20070193782 Fang et al. Aug 2007 A1
20080011519 Smith et al. Jan 2008 A1
20080101977 Eason et al. May 2008 A1
20080196318 Bost et al. Aug 2008 A1
20080302576 Michandani et al. Dec 2008 A1
20090032501 Swingley et al. Feb 2009 A1
20090041612 Fang et al. Feb 2009 A1
20090136308 Newitt May 2009 A1
20090180915 Michandani et al. Jul 2009 A1
20090301788 Stevens et al. Dec 2009 A1
20100044114 Mirchandani et al. Feb 2010 A1
20100278603 Fang et al. Nov 2010 A1
20100323213 Aitchison et al. Dec 2010 A1
20110107811 Mirchandani et al. May 2011 A1
20110265623 Mirchandani et al. Nov 2011 A1
20110284179 Stevens et al. Nov 2011 A1
20110287238 Stevens et al. Nov 2011 A1
20110287924 Stevens Nov 2011 A1
20120237386 Mirchandani et al. Sep 2012 A1
20120240476 Mirchandani et al. Sep 2012 A1
20120241222 Mirchandani et al. Sep 2012 A1
20120282051 Mirchandani Nov 2012 A1
20120285293 Mirchandani et al. Nov 2012 A1
20120321498 Mirchandani Dec 2012 A1
20130025127 Mirchandani et al. Jan 2013 A1
20130025813 Mirchandani et al. Jan 2013 A1
20130026274 Mirchandani et al. Jan 2013 A1
20130028672 Mirchandani et al. Jan 2013 A1
20130036872 Mirchandani et al. Feb 2013 A1
20130037985 Mirchandani Feb 2013 A1
20130043615 Mirchandani et al. Feb 2013 A1
20130048701 Mirchandani et al. Feb 2013 A1
20130075165 Coleman et al. Mar 2013 A1
Foreign Referenced Citations (137)
Number Date Country
695583 Feb 1998 AU
1018474 Oct 1977 CA
1158073 Dec 1983 CA
1250156 Feb 1989 CA
2022065 Feb 1991 CA
2120332 Jun 1993 CA
2107004 May 1996 CA
2228398 Feb 1997 CA
2198985 Sep 1998 CA
2108274 Jul 2000 CA
2212197 Oct 2000 CA
2201969 Feb 2003 CA
2213169 Mar 2005 CA
2498073 Aug 2006 CA
2556132 Feb 2007 CA
2570937 Jun 2007 CA
2357407 Jan 2008 CA
19634314 Jan 1998 DE
10300283 Jun 2004 DE
102006030661 Jan 2008 DE
102007006943 Aug 2008 DE
0157625 Oct 1985 EP
0264674 Apr 1988 EP
0453428 Oct 1991 EP
0641620 Feb 1998 EP
0995876 Apr 2000 EP
1065021 Jan 2001 EP
1066901 Jan 2001 EP
1106706 Jun 2001 EP
0759480 Jan 2002 EP
1244531 Oct 2004 EP
1686193 Aug 2006 EP
2627541 Aug 1989 FR
622041 Apr 1949 GB
945227 Dec 1963 GB
1082568 Sep 1967 GB
1309634 Mar 1973 GB
1420906 Jan 1976 GB
1491044 Nov 1977 GB
2064619 Jun 1981 GB
2158744 Nov 1985 GB
2218931 Nov 1989 GB
2315452 Feb 1998 GB
2324752 Nov 1998 GB
2352727 Feb 2001 GB
2384745 Aug 2003 GB
2385350 Aug 2003 GB
2393449 Mar 2004 GB
2397832 Aug 2004 GB
2435476 Aug 2007 GB
51-124876 Oct 1976 JP
56-52604 May 1981 JP
59-54510 Mar 1984 JP
59-56501 Apr 1984 JP
59-67333 Apr 1984 JP
59-169707 Sep 1984 JP
59-175912 Oct 1984 JP
60-48207 Mar 1985 JP
60-172403 Sep 1985 JP
61-226231 Oct 1986 JP
61-243103 Oct 1986 JP
61057123 Dec 1986 JP
62-34710 Feb 1987 JP
62-063005 Mar 1987 JP
62-218010 Sep 1987 JP
62-278250 Dec 1987 JP
1-171725 Jul 1989 JP
2-95506 Apr 1990 JP
2-269515 Nov 1990 JP
3-43112 Feb 1991 JP
3-73210 Mar 1991 JP
5-50314 Mar 1993 JP
5-92329 Apr 1993 JP
H05-64288 Aug 1993 JP
H03-119090 Jun 1995 JP
7-276105 Oct 1995 JP
8-120308 May 1996 JP
H8-209284 Aug 1996 JP
8-294805 Nov 1996 JP
9-11005 Jan 1997 JP
9-192930 Jul 1997 JP
9-253779 Sep 1997 JP
10-138033 May 1998 JP
10219385 Aug 1998 JP
H10-511740 Nov 1998 JP
11-10409 Jan 1999 JP
11-300516 Nov 1999 JP
2000-237910 Sep 2000 JP
2000-296403 Oct 2000 JP
2000-355725 Dec 2000 JP
2002-097885 Apr 2002 JP
2002-166326 Jun 2002 JP
2002-317596 Oct 2002 JP
2003-306739 Oct 2003 JP
2004-160591 Jun 2004 JP
2004-181604 Jul 2004 JP
2004-190034 Jul 2004 JP
2005-111581 Apr 2005 JP
20050055268 Jun 2005 KR
2135328 Aug 1999 RU
2173241 Feb 2000 RU
2167262 May 2001 RU
967786 Oct 1982 SU
975369 Nov 1982 SU
990423 Jan 1983 SU
1269922 Nov 1986 SU
1292917 Feb 1987 SU
1350322 Nov 1987 SU
6742 Dec 1994 UA
63469 Jan 2006 UA
23749 Jun 2007 UA
WO 9205009 Apr 1992 WO
WO 9222390 Dec 1992 WO
WO 9734726 Sep 1997 WO
WO 9828455 Jul 1998 WO
WO 9913121 Mar 1999 WO
WO 0043628 Jul 2000 WO
WO 0052217 Sep 2000 WO
WO 0143899 Jun 2001 WO
WO 03010350 Feb 2003 WO
WO 03011508 Feb 2003 WO
WO 03049889 Jun 2003 WO
WO 2004053197 Jun 2004 WO
WO 2005045082 May 2005 WO
WO 2005054530 Jun 2005 WO
WO 2005061746 Jul 2005 WO
WO 2005106183 Nov 2005 WO
WO 2006071192 Jul 2006 WO
WO 2006104004 Oct 2006 WO
WO 2007001870 Jan 2007 WO
WO 2007022336 Feb 2007 WO
WO 2007030707 Mar 2007 WO
WO 2007044791 Apr 2007 WO
WO 2007127680 Nov 2007 WO
WO 2008098636 Aug 2008 WO
WO 2008115703 Sep 2008 WO
WO 2011008439 Jan 2011 WO
Non-Patent Literature Citations (179)
Entry
US 4,966,627, 10/30/1990, Keshavan et al. (withdrawn).
Office Action mailed Feb. 27, 2013 in U.S. Appl. No. 13/550,690.
Office Action mailed Jan. 23, 2013 in U.S. Appl. No. 13/652,508.
Office Action mailed Apr. 5, 2013 in U.S. Appl. No. 13/632,177.
Restriction Requirement mailed Jan. 3, 2013 in U.S. Appl. No. 13/632,178.
Office Action mailed Mar. 6, 2013 in U.S. Appl. No. 13/632,178.
Office Action mailed Oct. 4, 2012 in U.S. Appl. No. 13/491,638.
Notice of Allowance mailed Mar. 6, 2013 in U.S. Appl. No. 13/491,638.
Office Action mailed Jun. 28, 2012 in U.S. Appl. No. 13/222,324.
Office Action mailed Jul. 11, 2012 in U.S. Appl. No. 13/222,324.
Office Action mailed Nov. 6, 2012 in U.S. Appl. No. 13/222,324.
Restriction Requirement mailed Jul. 24, 2008 in U.S. Appl. No. 11/167,811.
Office Action mailed Oct. 21, 2008 in U.S. Appl. No. 11/167,811.
Final Office Action mailed Jun. 12, 2009 in U.S. Appl. No. 11/167,811.
Office Action mailed Aug. 28, 2009 in U.S. Appl. No. 11/167,811.
Office Action mailed Mar. 2, 2010 in U.S. Appl. No. 11/167,811.
Office Action mailed Aug. 19, 2010 in U.S. Appl. No. 11/167,811.
Advisory Action Before the Filing of an Appeal Brief mailed May 12, 2010 in U.S. Appl. No. 11/167,811.
Office Action mailed Feb. 3, 2011 in U.S. Appl. No. 11/167,811.
Advisory Action mailed May 11, 2011 in U.S. Appl. No. 11/167,811.
Office Action mailed Jul. 22, 2011 in U.S. Appl. No. 11/167,811.
Office Action mailed Mar. 28, 2012 in U.S. Appl. No. 11/167,811.
Restriction Requirement mailed Sep. 17, 2010 in U.S. Appl. No. 12/397,597.
Office Action mailed Nov. 15, 2010 in U.S. Appl. No. 12/397,597.
Office Action mailed Jun. 7, 2011 in U.S. Appl. No. 12/397,597.
Advisory Action Before the Filing of an Appeal Brief mailed Aug. 31, 2011 in U.S. Appl. No. 12/397,597.
Office Action mailed Nov. 17, 2011 in U.S. Appl. No. 12/397,597.
Advisory Action mailed Jan. 26, 2012 in U.S. Appl. No. 12/397,597.
Office Action mailed Apr. 13, 2012 in U.S. Appl. No. 12/397,597.
Office Action mailed Dec. 29, 2005 in U.S. Appl. No. 10/903,198.
Office Action mailed Sep. 29, 2006 in U.S. Appl. No. 10/903,198.
Office Action mailed Mar. 27, 2007 in U.S. Appl. No. 10/903,198.
Office Action mailed Sep. 26, 2007 in U.S. Appl. No. 10/903,198.
Office Action mailed Jan. 16, 2008 in U.S. Appl. No. 10/903,198.
Office Action mailed Oct. 31, 2008 in U.S. Appl. No. 10/903,198.
Office Action mailed Apr. 17, 2009 in U.S. Appl. No. 10/903,198.
Advisory Action before mailing of Appeal Brief mailed Jun. 29, 2009 in U.S. Appl. No. 10/903,198.
Examiner's Answer mailed Aug. 17, 2010 in U.S. Appl. No. 10/903,198.
Office Action mailed Oct. 13, 2011 in U.S. Appl. No. 12/179,999.
Notice of Allowance mailed Apr. 30, 2012 in U.S. Appl. No. 12/179,999.
Office Action mailed Aug. 29, 2011 in U.S. Appl. No. 12/476,738.
Office Action mailed Dec. 21, 2011 in U.S. Appl. No. 12/476,738.
Notice of Allowance mailed Apr. 17, 2012 in U.S. Appl. No. 12/476,738.
Corrected Notice of Allowability mailed Jun. 21, 2012 in U.S. Appl. No. 12/476,738.
Office Action mailed Dec. 5, 2011 in U.S. Appl. No. 13/182,474.
Office Action mailed Apr. 27, 2012 in U.S. Appl. No. 13/182,474.
Notice of Allowance mailed Jul. 18, 2012 in U.S. Appl. No. 13/182,474.
Notification of Reopening of Prosecution Due to Consideration of an Information Disclosure Statement Filed After Mailing of a Notice of Allowance mailed Oct. 10, 2012 in U.S. Appl. No. 13/182,474.
Office Action mailed Jun. 1, 2001 in U.S. Appl. No. 09/460,540.
Office Action mailed Dec. 1, 2001 in U.S. Appl. No. 09/460,540.
Office Action mailed Mar. 15, 2002 in U.S. Appl. No. 09/460,540.
Office Action mailed Jun. 18, 2002 in U.S. Appl. No. 09/460,540.
Notice of Allowance mailed Oct. 21, 2002 in U.S. Appl. No. 09/460,540.
Office Action mailed Jan. 16, 2007 in U.S. Appl. No. 11/013,842.
Action mailed Jul. 16, 2008 in U.S. Appl. No. 11/013,842.
Office Action mailed Jul. 30, 2007 in U.S. Appl. No. 11/013,842.
Notice of Allowance mailed Nov. 26, 2008 in U.S. Appl. No. 11/013,842.
Office Action mailed Oct. 13, 2006 in U.S. Appl. No. 10/922,750.
Notice of Allowance mailed May 21, 2007 for U.S. Appl. No. 10/922,750.
Supplemental Notice of Allowability mailed Jul. 3, 2007 for U.S. Appl. No. 10/922,750.
Office Action mailed May 14, 2009 in U.S. Appl. No. 11/687,343.
Office Action mailed Jan. 21, 2010 in U.S. Appl. No. 11/687,343.
Notice of Allowance mailed May 18, 2010 in U.S. Appl. No. 11/687,343.
Restriction Requirement mailed Aug. 4, 2010 in U.S. Appl. No. 12/196,815.
Office Action mailed Oct. 27, 2010 in U.S. Appl. No. 12/196,815.
Office Action mailed Nov. 17, 2010 in U.S. Appl. No. 12/196,815.
Notice of Allowance mailed Jan. 27, 2011 in U.S. Appl. No. 12/196,815.
Notice of Allowance mailed May 16, 2011 in U.S. Appl. No. 12/196,815.
Office Action mailed Aug. 31, 2007 in U.S. Appl. No. 11/206,368.
Office Action mailed Feb. 28, 2008 in U.S. Appl. No. 11/206,368.
Pre-Appeal Conference Decision mailed Jun. 19, 2008 in U.S. Appl. No. 11/206,368.
Notice of Allowance mailed Nov. 13, 2008 in U.S. Appl. No. 11/206,368.
Office Action mailed Apr. 30, 2009 in U.S. Appl. No. 11/206,368.
Notice of Allowance mailed Nov. 30, 2009 in U.S. Appl. No. 11/206,368.
Office Action mailed Sep. 2, 2011 in U.S. Appl. No. 12/850,003.
Notice of Allowance mailed Nov. 15, 2011 in U.S. Appl. No. 12/850,003.
Office Action mailed May 3, 2010 in U.S. Appl. No. 11/924,273.
Office Action mailed Oct. 14, 2010 in U.S. Appl. No. 11/924,273.
Office Action mailed Feb. 2, 2011 in U.S. Appl. No. 11/924,273.
Interview Summary mailed Feb. 16, 2011 in U.S. Appl. No. 11/924,273.
Interview Summary mailed May 9, 2011 in U.S. Appl. No. 11/924,273.
Notice of Allowance mailed Jun. 24, 2011 in U.S. Appl. No. 11/924,273.
Office Action mailed Mar. 15, 2012 in U.S. Appl. No. 12/464,607.
Notice of Allowance mailed Apr. 9, 2012 in U.S. Appl. No. 12/464,607.
Notice of Allowance mailed Jul. 16, 2012 in U.S. Appl. No. 12/464,607.
Office Action mailed Oct. 31, 2011 in U.S. Appl. No. 13/207,478.
Office Action mailed Mar. 2, 2012 in U.S. Appl. No. 13/207,478.
Notice of Allowance mailed Apr. 13, 2012 in U.S. Appl. No. 13/207,478.
Supplemental Notice of Allowability mailed Jun. 29, 2012 in U.S. Appl. No. 13/207,478.
Office Action mailed Mar. 12, 2009 in U.S. Appl. No. 11/585,408.
Office Action mailed Sep. 22, 2009 in U.S. Appl. No. 11/585,408.
Office Action mailed Sep. 7, 2010 in U.S. Appl. No. 11/585,408.
Office Action mailed Feb. 16, 2011 in U.S. Appl. No. 11/585,408.
Advisory Action mailed May 3, 2011 in U.S. Appl. No. 11/585,408.
Office Action mailed Aug. 17, 2011 in U.S. Appl. No. 11/585,408.
Notice of Allowance mailed May 9, 2012 in U.S. Appl. No. 11/585,408.
Notice of Allowance mailed Jul. 20, 2012 in U.S. Appl. No. 11/585,408.
Corrected Notice of Allowability mailed Oct. 18, 2012 in U.S. Appl. No. 11/585,408.
Office Action mailed Mar. 19, 2009 in U.S. Appl. No. 11/737,993.
Office Action mailed Jun. 3, 2009 in U.S. Appl. No. 11/737,993.
Office Action mailed Dec. 9, 2009 in U.S. Appl. No. 11/737,993.
Office Action mailed Feb. 24, 2010 in U.S. Appl. No. 11/737,993.
Office Action mailed Jun. 29, 2010 in U.S. Appl. No. 11/737,993.
Advisory Action Before the Filing of an Appeal Brief mailed Sep. 9, 2010 in U.S. Appl. No. 11/737,993.
Pre-Brief Appeal Conference Decision mailed Nov. 22, 2010 in U.S. Appl. No. 11/737,993.
Office Action mailed Apr. 20, 2011 in U.S. Appl. No. 11/737,993.
Office Action mailed Aug. 3, 2011 in U.S. Appl. No. 11/737,993.
Office Action mailed Oct. 11, 2011 in U.S. Appl. No. 11/737,993.
Office Action mailed Jan. 6, 2012 in U.S. Appl. No. 11/737,993.
Advisory Action Before the Filing of an Appeal Brief mailed Mar. 22, 2012 in U.S. Appl. No. 11/737,993.
Notice of Allowance mailed Jul. 25, 2012 in U.S. Appl. No. 11/737,993.
Office Action mailed Apr. 22, 2010 in U.S. Appl. No. 12/196,951.
Office Action mailed Oct. 29, 2010 in U.S. Appl. No. 12/196,951.
Office Action mailed Apr. 12, 2011 in U.S. Appl. No. 12/196,951.
Office Action mailed Oct. 19, 2011 in U.S. Appl. No. 12/196,951.
Office Action mailed Mar. 19, 2012 in U.S. Appl. No. 12/196,951.
Notice of Allowance mailed Jul. 31, 2012 in U.S. Appl. No. 12/196,951.
Office Action mailed Nov. 14, 2011 in U.S. Appl. No. 12/502,277.
Office Action mailed Jan. 20, 2012 in U.S. Appl. No. 12/502,277.
Notice of Allowance mailed Jul. 10, 2012 in U.S. Appl. No. 12/502,277.
Supplemental Notice of Allowability mailed Jul. 20, 2012 in U.S. Appl. No. 12/502,277.
Coyle, T.W. and A. Bahrami, “Structure and Adhesion of Ni and Ni—WC Plasma Spray Coatings,” Thermal Spray, Surface Engineering via Applied Research, Proceedings of the 1st International Thermal Spray Conference, May 8-11, 2000, Montreal, Quebec, Canada, 2000, pp. 251-254.
Deng, X. et al., “Mechanical Properties of a Hybrid Cemented Carbide Composite,” International Journal of Refractory Metals and Hard Materials, Elsevier Science Ltd., vol. 19, 2001, pp. 547-552.
Gurland, Joseph, “Application of Quantitative Microscopy to Cemented Carbides,” Practical Applications of Quantitative Matellography, ASTM Special Technical Publication 839, ASTM 1984, pp. 65-84.
Hayden, Matthew and Lyndon Scott Stephens, “Experimental Results for a Heat-Sink Mechanical Seal,” Tribology Transactions, 48, 2005, pp. 352-361.
Metals Handbook, vol. 16 Machining, “Cemented Carbides” (ASM International 1989), pp. 71-89.
Metals Handbook, vol. 16 Machining, “Tapping” (ASM International 1989), pp. 255-267.
Peterman, Walter, “Heat-Sink Compound Protects the Unprotected,” Welding Design and Fabrication, Sep. 2003, pp. 20-22.
Shi et al., “Composite Ductility—The Role of Reinforcement and Matrix”, TMS Meeting, Las Vegas, NV, Feb. 12-16, 1995, 10 pages.
Sriram, et al., “Effect of Cerium Addition on Microstructures of Carbon-Alloyed Iron Aluminides,” Bull. Mater. Sci., vol. 28, No. 6, Oct. 2005, pp. 547-554.
Tracey et al., “Development of Tungsten Carbide—Cobalt—Ruthenium Cutting Tools for Machining Steels” Proceedings Annual Microprogramming Workshop, vol. 14, 1981, pp. 281-292.
Vander Vort, “Introduction to Quantitative Metallography”, Tech Notes, vol. 1, Issue 5, published by Buehler, Ltd. 1997, 6 pages.
J. Gurland, Quantitative Microscopy, R.T. DeHoff and F.N. Rhines, eds., McGraw-Hill Book Company, New York, 1968, pp. 279-290.
You Tube, “The Story Behind Kennametal's Beyond Blast”, dated Sep. 14, 2010, http://www.youtube.com/watch?v=8—A-bYVwmU8 (3 pages) accessed on Oct. 14, 2010.
Kennametal press release on Jun. 10, 2010, http://news.thomasnet.com/companystory/Kennametal-Launches-Beyond-BLAST-TM-at-IMTS-2010-Booth-W-1522-833445 (2 pages) accessed on Oct. 14, 2010.
Pages from Kennametal site, https://www.kennametal.com/en-US/promotions/Beyond—Blast.jhtml (7 pages) accessed on Oct. 14, 2010.
ASM Materials Engineering Dictionary, J.R. Davis, Ed., ASM International, Fifth printing, Jan. 2006, p. 98.
Childs et al., “Metal Machining”, 2000, Elsevier, p. 111.
Brookes, Kenneth J. A., “World Directory and Handbook of Hardmetals and Hard Materials”, International Carbide Data, U.K. 1996, Sixth Edition, p. 42.
Firth Sterling grade chart, Allegheny Technologies, attached to Declaration of Prakash Mirchandani, Ph.D. as filed in U.S. Appl. No. 11/737,993 on Sep. 9, 2009.
Metals Handbook Desk Edition, definition of ‘wear’, 2nd Ed., J.R. Davis, Editor, ASM International 1998, p. 62.
McGraw-Hill Dictionary of Scientific and Technical Terms, 5th Edition, Sybil P. Parker, Editor in Chief, 1994, pp. 799, 800, 1933, and 2047.
ProKon Version 8.6, The Calculation Companion, Properties for W, Ti, Mo, Co, Ni and FE, Copyright 1997-1998, 6 pages.
Underwood, Quantitative Stereology, pp. 23-108 (1970).
Tibtech Innovations, “Properties table of stainless steel, metals and other conductive materials”, printed from http://www.tibtech.com/conductivity.php on Aug. 19, 2011, 1 page.
“Material: Tungsten Carbide (WC), bulk”, MEMSnet, printed from http://www.memsnet.org/material/tungstencarbidewcbulk/ on Aug. 19, 2001, 1 page.
Williams, Wendell S., “The Thermal Conductivity of Metallic Ceramics”, JOM, Jun. 1998, pp. 62-66.
Brookes, Kenneth J. A., “World Directory and Handbook of Hardmetals and Hard Materials”, International Carbide Data, U.K. 1996, Sixth Edition, pp. D182-D184.
Thermal Conductivity of Metals, The Engineering ToolBox, printed from http://www.engineeringtoolbox.com/thermal-conductivity-metals-d—858.html on Oct. 27, 2011, 3 pages.
The Thermal Conductivity of Some Common Materials and Gases, The Engineering ToolBox, printed from http://www.engineeringtoolbox.com/thermal-conductivity-d—429.html on Dec. 15, 2011, 4 pages.
ASTM G65-04, Standard Test Method for Measuring Abrasion Using the Dry Sand, Nov. 1, 2004, printed from http://infostore.saiglobal.com.
Tool and Manufacturing Engineers Handbook, Fourth Edition, vol. 1, Machining, Society of Manufacturing Engineers, Chapter 12, vol. 1, 1983, pp. 12-110-12-114.
Beard, T. “The Ins and Outs of Thread Milling; Emphasis: Hole Making, Interview”, Modern Machine Shop, Gardner Publications, Inc. 1991, vol. 64, No. 1, 5 pages.
Koelsch, J., “Thread Milling Takes on Tapping”, Manufacturing Engineering, 1995, vol. 115, No. 4, 6 pages.
Johnson, M. “Tapping”, Traditional Machining Processes, 1997, pp. 255-265.
“Thread Milling”, Traditional Machining Processes, 1997, pp. 268-269.
Scientific Cutting Tools, “The Cutting Edge”, 1998, printed on Feb. 1, 2000, 15 pages.
Helical Carbide Thread Mills, Schmarje Tool Company, 1998, 2 pages.
Pyrotek, Zyp Zircwash, www.pyrotek.info, Feb. 2003, 1 page.
Sims et al., “Casting Engineering”, Superalloys II, Aug. 1987, pp. 420-426.
Sikkenga, “Cobalt and Cobalt Alloy Castings”, Casting, vol. 15, ASM Handbook, ASM International, 2008, pp. 1114-1118.
Starck, H.C., Surface Technology, Powders for PTA-Welding, Lasercladding and other Wear Protective Welding Applications, Jan. 2011, 4 pages.
Ancormet® 101, Data Sheet, 0001-AM101-D-1, Hoeganaes, www.hoeganaes.com, 7 pages. (date unavailable).
Nassau, K. Ph.D. and Julia Nassau, “The History and Present Status of Synthetic Diamond, Part I and II”, reprinted from The Lapidary Journal, Inc., vol. 32, No. 1, Apr. 1978; vol. 32, No. 2, May 1978, 15 pages.
Specialty Metals, “Tungchip Dispenser, An improved feeder design, to allow for accurate delivery of Tungsten Carbide granules into the molten weld pool, generated by a MIG (GMAW) welding system”, (undated) 2 pages.
Dynalloy Industries, G.M.A.C.E, 2003, printed Jul. 8, 2009, 1 page.
Alloys International (Australasia) Pty. Ltd., “The Tungsten Carbide Vibratory Feeder System”, (undated) 6 pages.
Dynalloy Industries, Hardhead Technology, Tungsten Carbide Pellets, 2003, printed Jul. 8, 2009, 1 page.
Lincoln Electric, MIG Carbide Vibratory Feeder Assembly, (undated) 1 page.
Wearshield Hardfacing Electrodes, Tungsten Carbide Products, (undated) 1 page.
Postalloy, The best in hardfacing, Postle Industries, Inc., (undated) 13 pages.
Postalloy, Postle Industries, Inc., Postalloy PS-98, Tungsten Matrix Alloy, (undated) 1 page.
Postalloy, Data Sheet, Postle Industries, Inc., Postalloy 299-SPL, (undated) 1 page.
Postalloy, Data Sheet, Postle Industries, Inc., Postalloy CP 63070, (undated) 1 page.
Postalloy, Data Sheet, Postle Industries, Inc., Postalloy 14 TC, (undated) 1 page.
Postalloy, Data Sheet, Postle Industries, Inc., Postalloy PS-98, A Tungsten Carbide Matrix Wire for Carbide Embedding, (undated) 1 page.
Industrial Renewal Services, Steel BOC (Basic Oxygen Furnace) & BOP (Basic Oxygen Process) Hoods, printed Nov. 8, 2007, 2 pages.
UWO Products, printed Nov. 8, 2007 from http://www.universalweld.com/products.htm, 2 pages.
Shi et al., “Study on shaping technology of nanocrystalline WC—Co composite powder”, Rare Metal and Materials and Engineering, vol. 33, Suppl. 1, Jun. 2004, pp. 93-96. (English abstract).
Related Publications (1)
Number Date Country
20130036872 A1 Feb 2013 US
Provisional Applications (1)
Number Date Country
60795290 Apr 2006 US
Continuations (1)
Number Date Country
Parent 11737993 Apr 2007 US
Child 13652503 US