The present invention relates to flashlights. More specifically, the present invention relates to a modular magnetic connection for use with flashlights and the like.
People often have several flashlights as each flashlight has a different purpose. Different flashlights may be selected for different power levels, beam patterns, etc. While accommodating the desired uses, having multiple flashlights increases the space necessary to keep these flashlights and increases the number of batteries that the user must maintain.
Non-limiting and non-exhaustive embodiments of the present invention are described with reference to the following figures, wherein like reference numerals refer to like parts throughout the various views unless otherwise specified.
It will be appreciated that the drawings are illustrative and not limiting of the scope of the invention which is defined by the appended claims. The embodiments shown accomplish various aspects and objects of the invention. It is appreciated that it is not possible to clearly show each element and aspect of the invention in a single figure, and as such, multiple figures are presented to separately illustrate the various details of the invention in greater clarity. Similarly, not every embodiment need accomplish all advantages of the present invention. The drawings are drawn to scale to allow for better understanding of the structures and components thereof.
In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, to one having ordinary skill in the art that the specific detail need not be employed to practice the present invention. In other instances, well-known materials or methods have not been described in detail in order to avoid obscuring the present invention.
Turning now to
A user may connect a battery module 14 to a light module 18A, 18B, 18C by placing the light module plug 34 into the battery module socket 30, thereby creating a flashlight. The user may select a desired light module 18A, 18B, 18C and connect this light module to the battery module 14 to create a different flashlight as desired. Different light modules 18A, 18B, 18C may provide different lighting options to the user.
A user may also combine the battery module 14 and a light module 18 with other modules to vary the use of the flashlight. The extension module 22 may include a socket 30 and a plug 34 which are connected to each other physically and electrically with a length of wire 38. The plug 34 of the extension module 22 may be connected to the socket 30 of the battery module 14 and the plug 34 of a light module 18 connected to the socket 30 of the extension module 22 to create a flashlight with a length of flexible electrical cord between the battery module 14 and the light module 18. This may allow the user to place the battery module 14 in a desired location which is remote from the area illuminated by the light module 18 due to space, heat, weight, or other concerns.
The magnetic base module 26 may include a magnetic face 32 (e.g. a magnet) which is connected to a base/magnetic base 42 (which may also contain a magnet to allow the base 42 to be attached to other structures) via a flexible arm 46. An extension module or adapter module 36 may also include a magnetic face 32 (e.g. a magnet) which attaches to the magnetic face 32 of the magnetic base module 26. The adapter 36 may include a socket 30 for attachment to a light module 18 as well as a cord wire 38 and plug 34 for connection to a battery module 14. A magnet 32 may be attached opposite the socket 30.
The adapter 36 may allow a light 18 to be attached to the base module 26 and used as a lamp without requiring the bulk of the battery module 14 to be positioned immediately adjacent the light module 18 and base module 26. The flexible arm 46 may include a number of pivot joints or a continuously flexible section to allow a user to aim the light 18 in a desired direction. A user may connect the plug 34 of a light module 18 to the socket 30 of the adapter 36. The plug 34 of the adapter 36 may be connected to the battery module 14 and the magnet 32 on the adapter 36 may be attached to the magnet 32 on the base 26. In this example, the magnetic base module 26 may serve as a mechanical connection for positioning the light module 18. A magnetic base 42 may be attached to a metal/magnetic object to position the light module 18 in a desired position. The magnetic base module 26 may thus be used to hold and position the light 18. The adapter 36 may also allow a user to secure a light to another metal object. A user may connect the plug 34 of a light module 18 to the socket 30 of the adapter 36. The plug 34 of the adapter 36 may be connected to the battery module 14 and the magnet 32 on the adapter 36 may be attached to an iron or steel object to secure a light 18 to that object as a portable task light.
Referring now to
The insulating plate may be made of a material such as phenolic which electrically isolates the ring magnet 58 and the pin 62. The insulating plate 54 may include a ring shaped recess which receives the ring magnet 58 and a hole through the center of the ring shaped recess to allow the pin 62 to pass through the plate 50. This holds the ring magnet 58 and pin 62 in position and electrically isolates them from each other. The ring magnet 58 and the pin 62 may each form part of an electrical connection. The socket 30 may be formed such that the shroud 50 is not part of the electrical connection. The socket 30 is typically used for an electrical connection which may be electrically hot when it is not connected (i.e. the battery module 14 as compared to a light module 18) while the plug 34 is typically used for a part such as a light 18 which is plugged into a power module. This protects from accidental contact with live electrical leads as the electrical contacts in the socket 30 are recessed.
The plug 34 may also include a similar insulating plate 54 which holds a ring magnet 58 and a pin 62. The plug insulating plate 54 may be disposed at the end of the plug 34. The pin 62 may be located in hole in the center of the ring magnet 58. The insulating plate may be made of a material such as plastic, polymer, or phenolic which electrically isolates the ring magnet 58 and the pin 62. The plug 34 is sized to fit inside of the socket 30 and may be inserted into the sleeve 50 so that the pins 62 and magnets 58 contact each other. The ring magnet 58 and the pin 62 may each form part of an electrical connection. When the plug 34 is inserted into the socket 30, the pins 62 of the plug and socket contact each other and the ring magnets 58 of the plug and socket contact each other to complete at least a portion of an electrical circuit. While shown as part of the battery module 14 and light 18, each of the various plugs 34 and sockets 30 have the same structure and functionality as described.
Referring now to
The pin 62 is typically mounted in a hole which extends through the insulating plate 54. A distal end of the pin 62 is exposed and extends beyond the insulating plate 54 in order to contact another pin 62 and form an electrical connection. A proximal end of the pin 62 extends through the insulating plate and is located on the inside of the associated module. The proximal end of the pin is typically connected electrically to a battery, wire, LED, etc. which is part of the module. A spring 70 may be attached to the proximal end of the pin 62 and may be used to push the pin 62 forwards. The spring 70 may push the pin 62 forwards beyond the surface of the insulating plate 54 and ensure a good electrical contact with an adjacent pin 62. As such, the pin 62 may include a cylindrical body portion which extends through an opening in the insulating plate, a flange which extends from the proximal end of the cylindrical body portion and engages the insulating plate 54 to prevent the pin from extending through the insulating plate too far, and a spring mount used to secure the spring 70 to the pin 62. The spring 70 may press against a wall or other internal structure in a module to provide some force in biasing the pin 62 to extend outwardly from the insulating plate 54. For a battery module 14, the spring 70 may press against a battery or battery pack which is placed into the body of the battery module, forming an electrical connection with the battery.
In some examples, the spring 70 may not be necessary. For example, the socket 30 may be use a spring 70 in combination with a pin 62 while the post 34 uses only a pin 62 or similar electrical contact. Additionally, the magnetic field from the ring magnet 58 tends to center the pin 62 within the ring magnet longitudinally. If the pin 62 is made of a material which is attracted to a magnet, formed in an appropriate length (typically longer than the thickness of the ring magnet 58), and moves freely within a hole in the insulating plate 54, the ring magnet 58 will cause the pin 62 to protrude beyond the surface of the insulating plate 54.
When a socket 30 and plug 34 are connected, the opposed ring magnets 58 contact each other and hold the socket and plug together. The ring magnets 58 form an electrical connection to complete part of a circuit. The adjacent pins 62 are also held together and form an electrical connection to complete part of a circuit.
Referring now to
Referring to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
In this manner, the LED 146 may be illuminated by attaching both of the magnets 154 to a piece of metal such as a screwdriver or a work piece. Attaching the light 142 to a tool such as a screwdriver will provide illumination directly where a person is working with the tool without requiring the person to hold a light. The light 142 is quite small (i.e. about an inch long and less than half of an inch wide) and may thus be used as a convenient tool light without obscuring vision of the location where the tool is being used. The light 142 may also be attached to a steel or iron object adjacent where a person is working to illuminate the work area. The light 142 is sufficiently small to attach in many locations without interfering with a person's ability to work in that location.
Referring now to
Referring now to
Referring now to
There is thus disclosed an improved light and magnetic connection socket. A quick and convenient light with multiple different beam patterns and lighting options is provided. The light system allows a person maximum flexibility in mounting the light in a desired location. It will be appreciated that numerous changes may be made to the present invention without departing from the scope of the claims.
The present application is a Continuation Application of U.S. patent application Ser. No. 14/268,310, filed May 2, 2014, which is herein incorporated by reference in its entirety, and which claims the benefit of U.S. Provisional Application Ser. No. 61/819,518, filed May 3, 2013, which is herein incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3601595 | Kivela | Aug 1971 | A |
3786391 | Mathauser | Jan 1974 | A |
4390232 | Jamgotchian | Jun 1983 | A |
5401175 | Guimond et al. | Mar 1995 | A |
6217339 | Tsubata | Apr 2001 | B1 |
6267602 | Mendelson et al. | Jul 2001 | B1 |
6976882 | Kernan | Dec 2005 | B2 |
7264479 | Lee | Sep 2007 | B1 |
7344267 | Carito | Mar 2008 | B2 |
7351066 | DiFonzo et al. | Apr 2008 | B2 |
7402045 | Schwartzbart et al. | Jul 2008 | B2 |
7625213 | Tse | Dec 2009 | B1 |
7641476 | Didur et al. | Jan 2010 | B2 |
7758349 | Han et al. | Jul 2010 | B2 |
7789667 | Zhu et al. | Sep 2010 | B2 |
7871272 | Firman et al. | Jan 2011 | B2 |
7874844 | Fitts | Jan 2011 | B1 |
8058957 | Irion et al. | Nov 2011 | B2 |
20050255718 | McLeish | Nov 2005 | A1 |
20070114969 | Marmaropoulos | May 2007 | A1 |
20070161262 | Lloyd | Jul 2007 | A1 |
20070253195 | Dietz | Nov 2007 | A1 |
20110159705 | Schmidt | Jun 2011 | A1 |
20110171837 | Hardisty et al. | Jul 2011 | A1 |
20120162992 | Hu et al. | Jun 2012 | A1 |
Number | Date | Country | |
---|---|---|---|
20150285448 A1 | Oct 2015 | US |
Number | Date | Country | |
---|---|---|---|
61819518 | May 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14268310 | May 2014 | US |
Child | 14745922 | US |