The field of the invention is frames, especially frames for geometric solids.
Ornamental items (e.g., rings, necklaces, bracelets, watches, armbands, anklets, etc.) and other wearable items often comprise a frame that holds geometric solids such as gems, crystals, or pendants in place. In many known scenarios the geometric solid is permanently coupled to a frame; a ring setting or broach for example. In other known examples, some modularity is provided, but various moving pieces are required, which could lead to loss, as well as damage over extended use.
French patent application publication number FR 2618311 to Fullin teaches a modular pendant for earrings having two elements with triangular profiles that couple to one another in a few different configurations via a housing and an apparent snap-fit connection between the housing and the two elements. Unfortunately, Fullin's earrings do not appear to be configured to act as a frame for any geometric solid, and appear to have couplers (projections) that only allow for a very limited degree of modularity.
U.S. Pat. No. 9,199,182 to Hunts teaches a building component including a housing with a recess, and connector arms partially disposed within the recess and configured to couple with an axle positioned within a recess of another building component. Similarly to Fullin, Hunts building components appear to have couplers that only allow for a limited degree of modularity. Additionally, Hunt's snap-fit connection could lead to damage or loss of the connection arms or axel over time. Additionally, the coupling between building components may be weak and unsuitable for use as a frame.
Thus, there is still a need for improved modular frames for geometric solids.
The present invention is directed to devices and methods for modular frames for geometric solids. As used herein, a “frame” includes an object that at least partially encloses and surrounds a geometric solid. In some preferred embodiments, the frame surrounds at least 10%, at least 15%, at least 25%, at least 50%, at least 60% or even more of a surface area of a geometric solid such as a crystal gem. In some preferred embodiments, the frame surrounds less than 10%, less than 15%, less than 25%, less than 30%, less than 35% or even less of a surface area of a geometric solid. In some preferred embodiments, the frame is positioned over each edge of the geometric solid. In some preferred embodiments, the frame is positioned over or around each vertex of the geometric solid. Some contemplated frames are configured to be used as individual frames, but could also advantageously be coupled with one or more other frames to form a larger jewelry item having multiple frames. Additionally or alternatively, a frame kit could be provided that is configured to form frames suitable for geometric solids of different sizes and shapes. For example, the frame kit could be used to form a frame for a modified tetrahedron crystal, and could be taken apart and be used to form a frame for a multi-tetrahedron matrix. Preferably, the modular frames could be coupled to one another without the need for any external connectors (e.g., clips, connector arms) that could easily break or be lost. Viewed from a different perspective, all that is needed to form a larger jewelry item (with multiple frames holding multiple geometric solids) is the individual frames themselves, as they would be worn as individual frames.
In some aspects of the inventive subject matter, a modular frame for a geometric solid comprises (a) a first panel having a first window and a first side or arm that includes (1) a first mating edge and (2) a second edge different from the first mating edge and including a first catch, and (b) a second panel having a second window and a second side or arm that includes (1) a second mating edge and (2) a second edge different from the second mating edge and including a second catch. The first and second panels could couple to one another to form a recess or seat sized and dimensioned to receive a magnet. A first clip could be positioned over the magnet, and around at least a portion of the first arm and at least a portion of the second arm. The clip could include first and second clasps that are configured to mate with first and second catches of the first and second panels to form a first edge covering portion that includes a length of each of the first and second arms partially enclosed by the first clip. The first edge covering portion could advantageously be sized and dimensioned to be positioned over a chamfered edge of a geometric solid.
It is contemplated that a cylindrical or other magnet could be positioned in the first edge covering portion (e.g., between the clip and the first and second arms), which allows the frame to removably attach or otherwise couple with one or more different frames or objects (e.g., water bottle, pendant, decorative element of a different type made to fit the frame and removably attach to it).
It should be appreciated that frame panels and frames could have any suitable shape(s) to at least partially enclose or orient a geometric solid or a matrix of geometric solids. For example, contemplated frame(s) could be sized and dimensioned to hold a geometric solid that is of cuboctahedron, tetrahedron, icosahedron, cubic, rectangular cubic, dodecahedron, spheric or ovoid shape. Contemplated frame(s) could also be sized and dimensioned to hold a multi-tetrahedron or other matrix (see e.g., http://www.abzu2.com/2014/01/29/the-flower-of-life-and-the-6-1-tetrahedron-grid-the-other-and-father-of-the-geometry-of-the-fabric-space/). The frame(s) could be matched in orientation to the molecular orientation of the crystal lattice itself. A serial number could be included on the frame, for example, on the bottom frame panel and perpendicular to the x-axis of the geometric tetrahedron on the x-end of that axis. The crystal itself could also include a serial number, for example, one also positioned perpendicular to the x-axis on the x+ end of said axis.
Contemplated frame panels could comprise any suitable number of sides (e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10 or more), and the sides could have the same or different lengths, widths, shapes and curvatures. For example, a side (arm) that is configured to form a portion of an edge covering portion could comprise notches that are relatively small, and catches that extend along a substantial length of the side or arm (e.g., at least 25%, at least 50%, at least 65% of a length of the side), while a side that is configured to form a portion of a vertex saddle (a portion of the frame that is positioned over or around a vertex saddle, and optionally includes an opening sized and dimensioned to frame the vertex saddle) could have an irregular octagonal or other shape.
Where the geometric solid has four primary faces of substantially the same size (e.g., a truncated and chamfered tetrahedron), a modular frame could be made from four identical panels. Similarly, where the geometric solid has five, six, seven, eight or nine primary faces of substantially the same size, the modular frame could be made from five, six, seven, eight or nine identical panels, respectively. However, it should be appreciated that panels used to frame geometric solids having primary faces of substantially the same size and shape (or different sizes and shapes) could be different from one another. For example, a first frame panel having a side arm including a seat sized and dimensioned to receive a magnet fastener could be configured to mate with a second frame panel having a side arm that is thinner than the side arm of the first frame panel. One or both of the side arms could include a catch sized and dimensioned to block a clasp of a clip in place, for example below the clasp.
Additionally or alternatively, in some instances, for example where the geometric solid has a face that is generally triangular in shape, the frame panels could similarly be triangular in shape. Similarly, where the geometric solid has a face that is generally ovular, rectangular, pentagonal, hexagonal or heptagonal in shape, the frame panel could have an ovular, rectangular, pentagonal, hexagonal or heptagonal shape, respectively. Additionally or alternatively, in some instances, for example where the geometric solid has a face that is generally triangular in shape with truncated vertices, the frame panels could include six arms—three of which substantially align with the edges of the geometric solid, and three of which substantially align with the truncated vertices.
Similarly, it is contemplated that frame panels could include windows of any suitable size and shape that allow users to see portions of the framed geometric solid. The openings could have the same general shape as the frame panel itself (e.g., regular or irregular oval, regular or irregular rectangle, regular or irregular pentagon, regular or irregular hexagon, regular or irregular heptagon, regular or irregular octagon), or any other suitable shape (e.g., shape of an alphanumeric character, logo, image, different regular or irregular shape).
Various objects, features, aspects and advantages of the inventive subject matter will become more apparent from the following detailed description of preferred embodiments, along with the accompanying drawing figures in which like numerals represent like components.
The following discussion provides example embodiments of the inventive subject matter. Although each embodiment represents a single combination of inventive elements, the inventive subject matter is considered to include all possible combinations of the disclosed elements. Thus if one embodiment comprises elements A, B, and C, and a second embodiment comprises elements B and D, then the inventive subject matter is also considered to include other remaining combinations of A, B, C, or D, even if not explicitly disclosed.
The inventors have discovered that single frames could be made in a manner that allows a user to removably couple it with one or more other identical, similar or substantially different frames without the need for additional fasteners. Contemplated frames could be configured to hold a geometric solid, and optionally provide windows through which portions of the geometric solid is visible when the frames are worn by a user (e.g., as a necklace), or otherwise displayed.
Modular frames of the inventive subject matter provide for at least one of securing and orienting one or more geometric solids (for example, a crystal or a crystalline solid), preferably possessing at least one vertex and one edge. Such an apparatus, system, or method can serve as an educational tool utilized in the demonstration or investigation of effects realized by the placement or orientation of such a geometric solid relative to its environment. Similarly, embodiments of the inventive concept can serve as educational tools utilized in the investigation of effects realized by the placement or orientation of a plurality of geometric solids relative to their environment or to each other. Indicators, such as etching, an image, an opening, alphanumeric characters, serial number, or a logo could be provided along different portions of the frame (or the geometric solid itself) that informs a user of the orientation of such a preferred axis or pole relative other orientations. Further, especially in embodiments where the geometric solid includes a crystal, such a crystal can include additional indicia, including a serial number, a name, a manufacturer, a logo, an orientation relative to a parent crystal, a location relative to a parent crystal or block from which the crystal was cut, or other information. A serial number could be included on the frame, for example, on a frame panel or a clip, and another serial number (same or different) could be included on the crystal. In some embodiments, the frame could be matched in orientation to the molecular orientation of the crystal lattice itself, and the serial numbers could provide an indication of such match. For example, a serial number could be included on a bottom frame panel, and positioned perpendicularly to the x-axis of the crystal on the x− end of that axis. The crystal itself could also include a serial number, and be positioned perpendicular to the x-axis on the x+ end of said axis.
The frame can include at least one vertex saddle configured to receive or frame a vertex of a geometric solid. Preferably, the vertex saddle is made via a coupling of two or more frame panels. The frame can further comprise at least one edge strut (or an edge covering portion), which could also be made via a coupling of two or more frame panels. Such an edge strut can be configured to cover or conform to at least a portion of an edge of a geometric structure. In some embodiments, the frame can include multiple frame panels, saddles and struts configured to hold a truncated and chamfered tetrahedron solid or other geometric solid of any suitable shape (e.g., trihedral, icosahedron, cube, rectangular cube, sphere, ovoid, etc.). Where the geometric solid includes curvatures, it is contemplated that some or all of the frame panels could be curved rather than generally flat.
Crystal 100 is a chamfered and truncated tetrahedron solid having six chamfered edges 105, 115, 125, 135, 145, 155, and four truncated vertices 110, 120, 130, and 140. However, it should be appreciated that contemplated geometric solids could comprise any suitable size, shape and material, and frame panels of the inventive subject matter could sized and dimensioned to form modular frames configured for securing, holding and orienting any suitable geometric solid.
Each of the first, second and third frame components (210a, 210b, 210c) include indicia such as an opening, etching or image (215a, 215b, 215c) which could identify the preferred orientation of crystal 100 relative to the Z+ or C axis. The Z axis is the optical axis, and is generally known as the axis of growth. The Z− end of the axis is the base of crystal growth, and the Z+ end of the Z axis is the direction of the crystal growth. The crystals could also be oriented relative to the X-axis. For example, the crystal could be serialized on the lower edge chamfer perpendicular to the x-axis on the x+ end of the x-axis. The s-axis is the electric axis and the x+ end exhibits a positive voltage when the crystal is compressed along this axis. Chamfered edge covered by clip 220b is one area where the serial number could be etched into the crystal. Bumpers (e.g., foam, gel, silicone) are provided via frame 200, which advantageously create a gap (e.g., 205) between an inner surface of frame 200 and a face, edge or vertex of crystal 100. Contemplated gaps could be of any suitable length (e.g., between 1-10 mm, between 1-5 mm), and could be uniform throughout the length of the crystal and frame. For example, as illustrated in
As best seen in
Frame panels of the inventive subject matter could be made of any suitable material or materials, including for example, plastic, silicone, rubber, wood, metal, gold, silver, or a composite material. Additional information relating to the coupling of the frame panels is provided below in connection with
Bumper 430 is similar to bumpers 400 and 420, and comprises a base 435, protrusion 440a, protrusion 440b, and protrusion 440c. Protrusion 440b is similar to protrusion 415, and protrusion each of bumpers 440a and 440c is sized and dimensioned to fit within a seat formed by two or more frame panels, and (a) act as a spacer between a surface of the frame panel and the base 435, (b) act as a spacer between a magnet positioned in the seat and the base 435, or (c) fit within a recess formed on a inner surface of the seat.
Clips of the inventive subject matter could be made of any suitable material or materials, including for example, plastic, silicone, rubber, wood, metal, gold, silver, or a composite material. The material of the clip could be the same as of different from the frame panels and the bumpers. In some preferred aspects, the clips are made of a material and thickness such that the magnetic force from a magnet seated between the clip and frame panels could pass through with sufficient intensity to couple with magnets or clips from a different frame. Additionally or alternatively, clips of the inventive subject matter could comprise any shape (e.g., cross-sectional shape, channel shape) that is, for example, suitable to be secured over lengths of first and second arms of first and second frame panels.
Frame 600 comprises four frame panels (610a, 610b, 610c and 610d), and is sized and dimensioned to hold a crystal (e.g., crystal 100). Three frame panels (e.g., 610a, 610b, 610d) couple with one another to form each vertex saddle, which could include an opening having a shape that is the same as, or different from, the truncated vertex of the crystal. The opening could be oversized relative to the truncated vertex to accommodate gaps formed between frame 600 and crystal 100 by bumpers (e.g., bumpers 650a and 650b), for example where the frame's vertex saddle is flush or substantially flush with the truncated vertex of the crystal.
Furthermore, the vertex saddle could include an opening that is tapered such that a gap between the inner surface of the vertex saddle and an outer surface of the crystal is the same at each point that the vertex saddle is positioned over a portion of the crystal. This is best seen in
As illustrated, a portion of an edge strut has been cut away, and the clip removed, to show the arrangement of bumpers 650a and 650b, and magnet 660 positioned there-between. The edge strut that has been cut away is sized and dimensioned to cover a chamfered edge 135 of crystal 100.
Once bumpers 650a and 650b are secured in place, magnet 655 could optionally be positioned between bumpers 650a and 650b, which allows frame 600 to removably couple with or attach to other frames having a suitable fastener (as shown in
Frames could be coupled with one another in an edge-to-edge, saddle-to-saddle, or edge-to-saddle configuration. Where an edge covering portion of a first frame couples with an edge covering portion of a second frame (via magnets positioned within the edge covering portions), the frames are coupled in an edge-to-edge configuration. Where an edge covering portion of a first frame couples with a vertex saddle portion of a second frame, the frames are coupled in an edge-to-saddle configuration. Where a vertex saddle portion of a first frame couples with a vertex saddle portion of a second frame, the frames are coupled in a saddle-to-saddle configuration. While the description above is largely directed to magnets positioned under clips and hidden from the user, it should be appreciated that magnetic fasteners could be positioned along any portion of a frame, including for example on an outer wall of a frame, or embedded in an arm or side of a frame panel.
Additionally or alternatively to coupling with one or more frames, a modular frame of the inventive subject matter could couple with a frame holder that is configured to hang on a necklace or other item of jewelry.
Base 810 could include an opening having ends 840a and 840b, and the opening could be sized and dimensioned to receive a necklace such that the frame holder could hang on the necklace when worn. In some preferred embodiments, the opening is positioned on the base such that when the necklace is worn and the frame holder hangs from the necklace, the base sits against the wearer's body, and the free ends of base arms 820a, 820b and 820c are positioned away from the wearer's body. More specifically, it is contemplated that in some embodiments the opening is positioned such that
As best seen in
The base and base arms could be made of any suitable material, and could be made of the same or different material(s) as a modular frame it is sized and dimensioned to receive. In some aspects, the entire frame holder could be made of an injection molded plastic. In other aspects, at least one of the base and the base arms could be made of a metal, a wood, a plastic, a glass, a rubber, or any other suitable material(s).
As used in the description herein and throughout the claims that follow, the meaning of “a,” “an,” and “the” includes plural reference unless the context clearly dictates otherwise. Also, as used in the description herein, the meaning of “in” includes “in” and “on” unless the context clearly dictates otherwise.
Also, as used herein, and unless the context dictates otherwise, the term “coupled to” is intended to include both direct coupling (in which two elements that are coupled to each other contact each other) and indirect coupling (in which at least one additional element is located between the two elements). Therefore, the terms “coupled to” and “coupled with” are used synonymously.
In some embodiments, the numbers expressing quantities of ingredients, properties such as concentration, reaction conditions, and so forth, used to describe and claim certain embodiments of the invention are to be understood as being modified in some instances by the term “about.” Accordingly, in some embodiments, the numerical parameters set forth in the written description and attached claims are approximations that can vary depending upon the desired properties sought to be obtained by a particular embodiment. In some embodiments, the numerical parameters should be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of some embodiments of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as practicable. The numerical values presented in some embodiments of the invention may contain certain errors necessarily resulting from the standard deviation found in their respective testing measurements. Moreover, and unless the context dictates the contrary, all ranges set forth herein should be interpreted as being inclusive of their endpoints and open-ended ranges should be interpreted to include only commercially practical values. Similarly, all lists of values should be considered as inclusive of intermediate values unless the context indicates the contrary.
It should be apparent to those skilled in the art that many more modifications besides those already described are possible without departing from the inventive concepts herein. The inventive subject matter, therefore, is not to be restricted except in the spirit of the appended claims. Moreover, in interpreting both the specification and the claims, all terms should be interpreted in the broadest possible manner consistent with the context. In particular, the terms “comprises” and “comprising” should be interpreted as referring to elements, components, or steps in a non-exclusive manner, indicating that the referenced elements, components, or steps may be present, or utilized, or combined with other elements, components, or steps that are not expressly referenced. Where the specification claims refers to at least one of something selected from the group consisting of A, B, C . . . and N, the text should be interpreted as requiring only one element from the group, not A plus N, or B plus N, etc.
This application claims priority to U.S. provisional application No. 62/539,906 for Modular Frames For Geometric Solids, filed on Aug. 1, 2017. This and all other extrinsic materials discussed herein are incorporated by reference in their entirety as if each were specifically indicated to be incorporated by reference. Where a definition or use of a term in an incorporated reference is inconsistent or contrary to the definition of that term provided herein, the definition of that term provided herein applies and the definition of that term in the reference does not apply.
Number | Name | Date | Kind |
---|---|---|---|
1332206 | Dinhofer | Mar 1920 | A |
1434388 | Hughes | Nov 1922 | A |
2032955 | Roussy | Mar 1936 | A |
2057942 | Fay | Oct 1936 | A |
2716292 | Benjamin | Aug 1955 | A |
2868568 | Frye | Jan 1959 | A |
3115758 | Eberle | Dec 1963 | A |
3148539 | Cook | Sep 1964 | A |
3998004 | Ehrlich | Dec 1976 | A |
4055019 | Harvey | Oct 1977 | A |
4129975 | Gabriel | Dec 1978 | A |
4214404 | Fischer | Jul 1980 | A |
4238905 | MacGraw, II | Dec 1980 | A |
4701131 | Hildebrandt et al. | Oct 1987 | A |
4763489 | Strong | Aug 1988 | A |
4792319 | Svagerko | Dec 1988 | A |
5090217 | Beber | Feb 1992 | A |
5183430 | Swann | Feb 1993 | A |
5430989 | Jones | Jul 1995 | A |
5472365 | Engel | Dec 1995 | A |
5491986 | White | Feb 1996 | A |
5575701 | Hantman | Nov 1996 | A |
5707268 | Outman | Jan 1998 | A |
5897417 | Grey | Apr 1999 | A |
6059631 | Maddock | May 2000 | A |
6164815 | Degonda | Dec 2000 | A |
6176757 | Lin | Jan 2001 | B1 |
6325694 | Clever et al. | Dec 2001 | B1 |
6382982 | Wilcox et al. | May 2002 | B1 |
6450853 | Larws | Sep 2002 | B1 |
6558065 | Huang | May 2003 | B2 |
7154363 | Hunts | Dec 2006 | B2 |
7156392 | Plein | Jan 2007 | B2 |
7316598 | Lock | Jan 2008 | B1 |
7780499 | Truckai | Aug 2010 | B1 |
9003831 | Azar et al. | Apr 2015 | B1 |
9199182 | Hunts | Dec 2015 | B2 |
9314707 | Ornstein | Apr 2016 | B2 |
9466228 | Haramein | Oct 2016 | B2 |
9636600 | Rudisill | May 2017 | B2 |
9643100 | Fein | May 2017 | B2 |
10080977 | Rosen | Sep 2018 | B2 |
10255826 | Haramein | Apr 2019 | B2 |
10861350 | Haramein | Dec 2020 | B2 |
20020000097 | Butler | Jan 2002 | A1 |
20020083738 | Katz | Jul 2002 | A1 |
20030007829 | Huang | Jan 2003 | A1 |
20050026535 | Balanchi | Feb 2005 | A1 |
20050115274 | Douglas | Jun 2005 | A1 |
20070190892 | Manvelian | Aug 2007 | A1 |
20100083702 | Joseph | Apr 2010 | A1 |
20110083348 | Brouwer | Apr 2011 | A1 |
20110107706 | Fleishman | May 2011 | A1 |
20130267145 | Rosen | Oct 2013 | A1 |
20130269389 | Spadaro | Oct 2013 | A1 |
20130327088 | Smith | Dec 2013 | A1 |
20140072942 | Haramein | Mar 2014 | A1 |
20150121959 | Huynh | May 2015 | A1 |
20160184727 | Ornstein | Jun 2016 | A1 |
Number | Date | Country |
---|---|---|
2172123 | Apr 2010 | EP |
2463977 | Apr 2010 | GB |
2466724 | Jul 2010 | GB |
WO02055168 | Jul 2002 | WO |
WO2007091885 | Aug 2007 | WO |
WO2008061359 | May 2008 | WO |
WO2010138995 | Dec 2010 | WO |
Entry |
---|
International Search Report for PCT Application No. PCT/US2017/054788, dated Apr. 27, 2018. |
EP Search Report dated Mar. 30, 2021 for EP Application No. 17919858.5 filed on Jan. 30, 2020 entitled Modular Frames For Geometric Solids in the name of Ark Crystal (7 pages). |
Number | Date | Country | |
---|---|---|---|
20190037978 A1 | Feb 2019 | US |
Number | Date | Country | |
---|---|---|---|
62539906 | Aug 2017 | US |