It is believed that some fuel injectors include features that reduce undesirable noise associated with operation of the fuel injector. For example, it has been known to locate a silencing chamber around the outlet end of the fuel injector. But this is believed to address noise caused by the expansion of gaseous fuel, not noise propagated by the actuator.
It is also known to provide a noise insulator formed in or around the fuel injector to prevent transmission of noise from the fuel injector. In one example, annular dampening elements also have been included as part of the fuel injector nozzle body, but at the fuel metering section of the armature such that it is believed to be difficult to install, particularly post-manufacturing.
Another known example provides for a sound-dampening element formed unitarily as part of a fuel filter. The sound-dampening element, however, is believed to absorb noise propagating between the fuel injector and a fuel rail instead of damping the structure to reduce the vibration or noise.
The present invention provides for, in one aspect, a fuel injector. The fuel injector includes a body, filter, and damper member. The body extends along a longitudinal axis between an inlet end and an outlet end with a flow passage extending therebetween. The filter is disposed in the flow passage proximate the inlet end. The damper member extends from a first terminus to a second terminus. The first terminus is proximal to the longitudinal axis, and the second terminus is distal to the longitudinal axis. The damper member extends from the first terminus about the longitudinal axis towards the second terminus in a generally circular path to define an aperture that permits fluid communication between inlet end and the filter. The damper member is secured to the flow passage between the inlet end and the filter.
In another aspect of the present invention, a damper member that damps vibrations in a fuel injector is provided. The damper member includes a continuous wall that extends from a first end to a second end along a longitudinal axis. The wall extends from a first terminus to a second terminus. The first terminus is proximal the longitudinal axis, and the second terminus is distal to the longitudinal axis. The wall extends from the first terminus about the longitudinal axis towards the second terminus in a generally circular path to define an aperture extending between the first end to the second end along the longitudinal axis. The wall has an external surface to contact an inner surface of a tubular member with a contact area.
In yet another aspect, the present invention provides for a method of maintaining operational noise of a fuel injector at a predetermined noise level. The fuel injector has a body extending along a longitudinal axis and a valve group subassembly. The valve group subassembly includes an inlet tube having a portion disposed within the body. The method can be achieved by reducing the amplitude of vibration of the inlet tube being transmitted across an annular gap formed between an outer circumferential portion of the inlet tube and the body during operation of the fuel injector with a wall of a damper member convoluted about the longitudinal axis; and quantifying the reduction of the amplitude of vibration in the form of a standardized measured noise level output.
The accompanying drawings, which are incorporated herein and constitute part of this specification, illustrate an embodiment of the invention and, together with the general description given above and the detailed description given below, serve to explain the features of the invention.
The valve group subassembly 200 includes a tube assembly 202 extending along the longitudinal axis A-A between a first tube assembly end 202A and a second tube assembly end 202B. The tube assembly 202 can include at least an inlet tube 204, a non-magnetic shell 210 and a valve body 206. The inlet tube 204 has a first inlet tube end 202A. The inlet tube 204 has an inner surface 204A and an outer surface 204B spaced apart from the inner surface 204A over a generally constant spacing. A second inlet tube end 204D of the inlet tube 204 can be connected to a pole piece 208, and the pole piece 208 is connected to a first shell end 210A of a non-magnetic shell 210. A second shell end 210B of the non-magnetic shell 210 can be connected to a generally transverse planar surface of a first valve body end 206A of the valve body 206. A second valve body end 206B of the valve body 206 can be disposed proximate the second tube assembly end 202B. A pole piece can be integrally formed at the second inlet tube end 204D of the inlet tube 204 or, as shown, a separate pole piece 208 can be connected to the inlet tube 204 and connected to the first shell end 210A of the non-magnetic shell 210. Preferably, the components of the valve subassembly are stainless steel.
An armature assembly 212 can be disposed in the tube assembly 202. The armature assembly 212 includes a first armature assembly end having a ferro-magnetic or “armature” portion 214 and a second armature assembly end having a sealing portion. The armature assembly 212 can be disposed in the tube assembly 202 such that the magnetic portion 214A confronts a face portion 208A of the pole piece 208.
Fuel flow through the armature assembly 212 can be provided by at least one axially extending through-bore 214B and at least one aperture 220 through a wall of the armature assembly 212. The apertures 220 provide fluid communication between the at least one through-bore 214B and the interior of the valve body 206.
A resilient member 226 is disposed in the tube assembly 202 and biases the armature assembly 212 toward a seat 218. A filter assembly 228 includes a filter 230. A preload adjuster 232 is also disposed in the tube assembly 202. The filter assembly 228 includes a first filter assembly end 228A and a second filter assembly end 228B. The filter 230 can be disposed at one end of the filter assembly 228 and can also be located proximate the damper member 400 at the first end 200A of the tube assembly 202, and apart from the resilient member 226. The preload adjuster 232 can be disposed generally proximate the second end 200B of the tube assembly 202. The preload adjuster 232 engages the resilient member 226 and adjusts the biasing force of the member 226 with respect to the pole piece 208.
The valve group subassembly 200 can be assembled as follows. The non-magnetic shell 210 can be connected at respective distal ends of the shell 210 to the pole piece 208 and to the valve body 206. The filter assembly 228 can be inserted along the axis A-A from the first end 202A of the tube assembly 202. Next, the resilient member 226 and the armature assembly 212 (which was previously assembled) are inserted along the axis A-A from the valve group subassembly end 202B of the valve body 206. Other preferred variations of the valve group subassembly 200 are described and illustrated in U.S. Pat. No. 6,676,044, which is hereby incorporated by reference in its entirety.
The power group subassembly 300 includes an electromagnetic coil 302, at least one terminal 304, flux washer 318, a coil housing 306 and an overmold 308. The electromagnetic coil 302 comprises a wire 302A that can be wound on a bobbin 314 and electrically connected to electrical contacts 316 on the bobbin 314. When energized, the coil 302 generates magnetic flux that moves the armature assembly 212 toward the open configuration, thereby allowing the fuel to flow through the openings 214B and 220, the orifice of the seat 218 and the outlet end 202B. De-energization of the electromagnetic coil 302 allows the resilient member 226 to return the armature assembly 212 to the closed configuration, thereby shutting off the fuel flow. The coil housing 306, which provides a return path for the magnetic flux, generally includes a ferro-magnetic cylinder surrounding the electromagnetic coil 302, and a flux washer 318 extending from the cylinder toward the axis A-A.
The coil 302 can be constructed as follows. A plastic bobbin 314 can be molded with at least one electrical contact 316. The wire 302A for the electromagnetic coil 302 can be wound around the plastic bobbin 314 and connected to the electrical contacts 316. The coil housing 306 is then placed over the electromagnetic coil 302 and bobbin 314. A terminal 304, which can be pre-bent to a proper shape, is then electrically connected to each electrical contact 316. An overmold 308 is then formed to maintain the relative assembly of the coil/bobbin unit, coil housing 306 and terminal 304. The overmold 308 also provides a structural case for the injector and provides predetermined electrical and thermal insulating properties. Preferably, the overmold 308 can be a Nylon 6-6 material. Other preferred embodiments of the power group subassembly 300 are described and illustrated in U.S. Pat. No. 6,676,044, which is hereby incorporated by reference in its entirety.
The valve group subassembly 200 can be inserted into the power group subassembly 300 to form the fuel injector 100. The inserting of the valve group subassembly 200 into the power group subassembly 300 can involve setting the relative rotational orientation of valve group subassembly 200 with respect to the power group subassembly 300. Once the desired orientation is achieved, the subassemblies are inserted together. After inserting the valve group subassembly 200 into the power group subassembly 300, these two subassemblies are affixed together by a first securement 309 and a second securement 310. The first securement 309 can be by a suitable technique such as, for example, by welding or laser welding. The second securement 310 can also be by a suitable technique such as, for example, crimping a portion of the inlet tube 204 so that an annular gap 207 is formed between the outer wall 204B of a portion of the inlet tube 204 and the overmold 308. The first injector end 100A can be coupled to the fuel supply of an internal combustion engine (not shown). Fuel rail (not shown) is supplied to the tube assembly 202.
A damper member 400 is secured in the tube assembly 202 of the valve group subassembly 200 proximate first tube end 202A. As illustrated in
The flat workpiece may be formed from any malleable high-density material having a mass density of 2700 kg/m3 or greater. Preferably, such material can include stainless steel, carbon steel, brass, bronze, lead, titanium, or other metallic or metallic alloys materials. The flat workpiece can be an elongated band of material approximately 40 mm long, 8 mm wide and 1 mm thick. The flat workpiece can be configured into the convoluted cylindrical member 400 that includes first terminus 412A and second terminus 412B. The flat workpiece is preferably formed into the convoluted cylindrical member 400 with any points P0, P1, P2, P3, P4, P5 . . . PN located on corresponding locations on the wall 402 (e.g., at inner surface 402D) at respective radii R0, R1, R2, R3, R4, R5 . . . RN from the longitudinal axis A-A that increase in magnitude as the wall 402 extends from the first terminus 412A to the second terminus 412B. Thus, as shown in
The member 400 is believed to reduce the radiated acoustic sound produced during operation of the fuel injector. When the fuel injector opens and closes, the armature 212 assembly impacts the pole piece 208 and seat 218 of the fuel injector. This impact is believed to create sharp impulses that cause the tube assembly to vibrate in the overmold 308. The vibrations are believed to be amplified through the tube assembly 202 and transferred to the overmold 308 of the power group subassembly 300 across the annular gap 207. Consequently, it is believed that the vibrations of the overmold 308 are transmitted to the air and cause the perceived noise. In particular, by providing a contact surface area of about 67% of the “external” surface area 403 of the damper 400, the damper 400 can be mechanically secured via a press-fit to the inlet tube 204 at a particular location on the inner surface of the inlet tube 204 such that the inlet tube 204 (and the valve subassembly 200) has an increase in the mass at a specific location in the tube assembly. The increase in mass of the inlet tube is believed to dampen or attenuate vibrations transmitted through the valve subassembly 200 and power subassembly 300. That is, the addition of a specified mass to the valve subassembly 200 (at a particular location in the fuel injector) is believed to stiffen the fuel injector structure against vibration, i.e., by increasing the effective mass of the subassembly. By increasing the mass of the structure, the amplitude of the vibrations or the resonant frequency of the fuel injector is modified such that the vibrations (due to the impacts of the armature closing and opening) are damped, modified or reduced in its intensity so that acoustic noise perceivable by the human ear is reduced. At the same time, the member configuration of damper 400 provides elasticity for ease of insertion into the inlet tube 204. And to reduce the press-fit insertion force, various modifications can be made to the damper 400 such as, for example, reducing the thickness “t” of the wall 403, changing the material, or reducing the number of convolutions of the wall 402 about axis A-A.
By virtue of the convoluted configuration of the wall 402, the member 400 can resiliently deform as the member is press-fitted into the inlet tube 204 so that any distortion or damage to the inlet tube 204 is believed to be minimized. Preferably, the damper member 400 is press-fitted in the tube assembly 202 along axis A-A at first tube end 202A so that first end 402A is generally flush with the outermost surface of tube assembly 202 such as, for example, flange 202C. As used herein, “press-fit” means the application of assembly pressure adequate to provide a permanent connection to locate the damper body in a stationary position with respect to the inlet tube 204. Further, the term, “approximately” denotes a suitable level of tolerance that permits the damper 400 to be press fitted into tube assembly 202 without causing distortion to the inlet tube 204 or overmold 308 that would negatively affect the ability of the fuel injector to meter fuel.
According to another preferred embodiment, two or more members 400 can be disposed in the tube assembly 202. It is believed that the increase in the mass of specific components of the valve subassembly 200 at least attenuates the resonant frequency of the various components of the fuel injector, or even to shift or eliminate acoustical nodes formed on the surface of the inlet tube, armature, valve body, or overmold.
In operation, the electromagnetic coil 302 is energized, thereby generating magnetic flux in the magnetic circuit. The magnetic flux moves armature assembly 212 (along the axis A-A, according to a preferred embodiment) towards the pole piece 208, closing the working air gap. This movement of the armature assembly 212 separates the closure member 216 from the seat 218 and allows fuel to flow from the fuel rail (not shown), through the inlet tube 204, the through-bore 214B, the apertures 220A and the valve body 206, between the seat 218 and the closure member 216, and through the opening into the internal combustion engine (not shown). When the electromagnetic coil 302 is de-energized, the armature assembly 212 is moved by the bias of the resilient member 226 to contiguously engage the closure member 216 with the seat 218, and thereby prevent fuel flow through the injector 100.
It is believed that the preferred embodiment of the member 400 reduces the peak amplitude of the impulse transmitted from the tube assembly to the overmold due to the increased mass of the fuel injector provided by the damper member on the inlet tube. Preferably, the mass of the inlet tube is increased at least 45% by the addition of the damper 400. In one preferred embodiment of the inlet tube 202, the mass of the inlet tube is increased by about 125%. In a longer length of the preferred embodiment of the inlet tube 202, the mass of the inlet tube is increased by about 75%. In yet a longer length of the preferred embodiment of the inlet tube 202, the mass of the inlet tube is increased by about 56%. As used herein, the damping of vibration to reduce noise is quantifiable as an average decrease in measured sound level of at least 1 decibel-A (“dBA,” as measured on the “A” scale of a sound level meter specified under ANSI, type 2, ASNI, S1.4 (1971) on a slow response mode, or on a scale that approximates human hearing response).
It is believed that another advantage of disposing the member in the inlet tube of the fuel injector is to allow post-manufacturing installation and adjustment of the damper member should a fuel injector similar to the preferred embodiment generate a noise perceived to be undesirable by, e.g., a vehicle driver.
Whether installed in the fuel injector originally or post-manufacturing, it is believed that the member can measurably reduce undesirable noise created by vibrations between the valve group and the power group subassemblies during fuel injection operation.
To evaluate whether the preferred member for a fuel injector according to the preferred embodiments would provide adequate noise reduction, testing was performed to compare the known fuel injector noise levels with those in the preferred embodiment. Acoustic sound testing was conducted on a sample fuel injector utilizing sound measurement equipment while the fuel injector is operated according to Society of Automotive Engineers Testing Standard for Low Pressure Gasoline Fuel Injector J1832 (February 2001), which Testing Standard is incorporated by reference into this application.
The sound test procedure includes placing the sample fuel injector without a damper member in an anechoic chamber approximately 0.66×0.66×0.66 meters in size; placing two free-field B&K® Model No. 4190 ½-inch microphones approximately 0.4 meters from the middle of the longitudinal axis A-A of the fuel injector; with one microphone placed perpendicular to the longitudinal axis A-A and the other microphone placed at a 45° angle to the axis; forcing a test fluid such as, for example, heptane or preferably water through the fuel injector under 400 KPa of pressure; actuating the electromagnetic solenoid at a duty cycle of 4%; and sampling sound through the microphones for an average of 10 seconds. A fuel exit hose was placed around the discharge end of the fuel injector to reduce any noise created by the fuel injector spray from affecting the noise level.
Each acoustic sound test was repeated using a sample fuel injector equipped with a single member according to the preferred embodiments. Further, multiple tests were performed for each sample fuel injector. Accordingly, the damper member sample test results are compared with the “base line” sample fuel injector results.
It is believed that this test procedure is applicable as one technique of verifying noise level in a laboratory setting. It is also believed that noise levels for a fuel injector as installed in a vehicle are even lower than as measured in the test chamber due to the interaction of multiple fuel injectors, fuel rail damper and pressure regulator, the vehicle fuel rail, intake manifold and other engine components.
A summary of the acoustic sound test results according to the test procedure is provided in Table 1 below. As shown in Table 1, use of a member according to the preferred embodiments reduced noise in the fuel injector from 0.50 to 2.06 dBA on average.
As shown in Table 1, a series of 5 sound tests performed on a sample A fuel injector resulted in an average sound reduction of 0.50 dBA. A series of 10 tests on a sample B fuel injector resulted in an average reduction of 1.60 dBA. A series of 8 tests on a sample C fuel injector resulted in an average reduction of 2.09 dBA. The reduction of at least one dBA in this test procedure is believed to be greater than expected in the fuel injector of the preferred embodiments.
Moreover, the reduction in noise level confirms the ability of the damper to attenuate noise in a fuel injector of the preferred embodiments. And it is believed that by reducing noise to a level at preferably about 51 dBA or lower, the subjective perception of the reduction in undesirable noise is greater than if the noise were at higher levels.
While the present invention has been disclosed with reference to certain embodiments, numerous modifications, alterations and changes to the described embodiments are possible without departing from the sphere and scope of the present invention, as defined in the appended claims. Accordingly, it is intended that the present invention not be limited to the described embodiments, but that it has the full scope defined by the language of the following claims, and equivalents thereof.