Field
This application relates to a glare screen for a concrete barrier wall. In particular, this application relates to a modular glare screen for a barrier wall.
Background
Concrete barriers are typically utilized to divide opposite flowing lanes of traffic. To prevent head light glare, glare screens may be attached to the top of the concrete barriers. The glare screens may utilize a number of blades connected to one or more rails.
Existing glare screens require complicated assembly of the blades to the rails. For example, brackets, nuts, rivets, bolts, pins, etc. may be required to secure the blades to the concrete barriers. Such requirements make it time consuming and relatively difficult to assemble and disassemble the glare screen.
Preassembly of the glare screens (or portions thereof) may be performed at a remote location. The preassembled glare screens may be transported to the work site for installation. However, assembled glare screens may be bulky and hard to handle, and may require more truck space and trips to the work site.
Glare screens may also be assembled in the field. While more product may be delivered per load when glare screens are transported unassembled, assemblers may be required to assemble the glare screen in potentially dangerous construction zones and in unpleasant outdoor conditions.
In a first aspect, a glare-blocking system includes a glare-blocking member and a rail. The glare-blocking member includes a bottom edge, a left recess, and a right recess. The rail includes a left lateral portion that includes a left protrusion configured to mate with the left recess of the glare-blocking member. The rail also includes a right lateral portion that includes a right protrusion configured to mate with the right recess of the glare-blocking member. The rail includes a projecting contour between the left and right lateral portions that defines a groove configured to receive the bottom edge of the glare-blocking member.
In a second aspect, a glare-blocking member for a barricade includes a top edge and a bottom edge. Left and right edges of the glare-blocking member extend between the top edge and the bottom edge. A left recess is formed in the left edge proximate to the bottom edge. A right recess is formed in the right edge proximate to the bottom edge. The glare-blocking member is configured to be inserted into a rail that runs along a top of the barricade. The left and right recesses are configured to receive a pair of protrusions at either end of the rail when the glare-blocking member is inserted into the rail. The recesses cooperate with the protrusions to secure the glare-blocking member to the rail.
In yet another aspect, a rail for a barricade includes a first vertical edge portion on a left side of the rail that defines a first protrusion at an end of the first vertical edge portion that is configured to mate with a first recess of a glare-blocking member. The rail includes a second vertical edge portion on a right side of the rail that defines a second protrusion at an end of the second vertical edge portion that is configured to mate with a second recess of the glare-blocking member. The rail includes a projecting contour between the first and the second vertical edge portions that defines a groove configured to receive a bottom edge of the glare-blocking member.
Other aspects, features, and advantages will be, or will become, apparent to one with skill in the art upon examination of the following figures and detailed description. It is intended that all such additional features and advantages included within this description be within the scope of the claims, and be protected by the following claims.
The accompanying drawings are included to provide a further understanding of the claims, are incorporated in, and constitute a part of this specification. The detailed description and illustrated embodiments described serve to explain the principles defined by the claims.
The embodiments described below overcome the problems with existing glare screens by providing a rail with sections configured to deflect to allow for the quick insertion of a glare-blocking member into the rail.
As illustrated in
The grooves 205ab may be formed in the first set of left and right projecting contours 405ab. The grooves 205ab extend in a downward direction within the contours 410ab to a point that is below or at the apex of the second set of contours 410b when measured from the lower edge of the rail 105. The second set of contours 410ab function as a stop to limit the insertion depth of the glare-blocking member 110 within the grooves 205ab.
In some implementations, the rail member may not include the second set of contours 410ab. In this case, the groove depth of the first projecting contours 405ab, the location of the recesses 425ab in the glare-blocking member 110, and the location of the protrusions 420ab may be selected to provide a tight fit between the glare-blocking member 110 and the rail 105.
The glare-blocking member 110 is generally rectangular and includes first and second longitudinal edges 430ab and a lower edge 435. In an exemplary implementation, the glare-blocking member 110 may be about 24 inches high and six inches wide. However, the dimensions may be different. As can be seen from a top view (see
Returning to
In an alternative implementation, the glare-blocking member 110 may be positioned over the grooved section of the rail 105 and then pushed down towards the rail 105 until the lower edge 435 of the glare-blocking member 110 enters both grooves 205ab and the beveled corners 440ab of the glare-blocking member 110 engage the protrusions 420ab of the rail 105. The force applied by continued downward pressure causes the protrusions 420ab to deflect in an outward direction and the protrusions 420 to ride over the beveled corners 440ab of the glare-blocking member 110 and to snap into the recesses 425ab of the glare-blocking member 110.
While various embodiments of the embodiments have been described, it will be apparent to those of ordinary skill in the art that many more embodiments and implementations are possible that are within the scope of the claims. For example, the various dimensions, angles, etc. described above are merely exemplary and may be changed as necessary. Accordingly, it will be apparent to those of ordinary skill in the art that many more embodiments and implementations are possible that are within the scope of the claims. Therefore, the embodiments described are only provided to aid in understanding the claims and do not limit the scope of the claims.
This application claims priority to U.S. Provisional Application No. 61/765,168, filed Feb. 15, 2013, the contents of which are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
4338041 | Schmanski | Jul 1982 | A |
4504168 | Miller | Mar 1985 | A |
5022781 | Smith | Jun 1991 | A |
5149061 | Borgnini | Sep 1992 | A |
5190394 | Mallon et al. | Mar 1993 | A |
5224791 | Syak | Jul 1993 | A |
5429449 | Baatz | Jul 1995 | A |
5641241 | Rushing | Jun 1997 | A |
6149338 | Anderson | Nov 2000 | A |
6260827 | Sicking | Jul 2001 | B1 |
6835023 | Paterson | Dec 2004 | B1 |
6962461 | Choi | Nov 2005 | B2 |
7850317 | Blackburn et al. | Dec 2010 | B2 |
8230628 | Recker | Jul 2012 | B2 |
20100118401 | Blackburn | May 2010 | A1 |
Number | Date | Country |
---|---|---|
2698893 | Feb 1995 | FR |
2632991 | Dec 2010 | FR |
1025653 | Apr 1966 | GB |
3914343 | May 2007 | JP |
Entry |
---|
International Search Report and Written Opinion dated Jun. 16, 2014 for PCT/US2014/016412. |
Number | Date | Country | |
---|---|---|---|
20140233107 A1 | Aug 2014 | US |
Number | Date | Country | |
---|---|---|---|
61765168 | Feb 2013 | US |