Modular I-beam

Information

  • Patent Grant
  • 6735919
  • Patent Number
    6,735,919
  • Date Filed
    Monday, July 30, 2001
    23 years ago
  • Date Issued
    Tuesday, May 18, 2004
    20 years ago
Abstract
A modular I-beam comprises first and second sets of nested channels disposed in back-to-back relation to one another and fastened together. The modular I-beam may further include a central beam disposed between the first and second sets of nested channels.
Description




FIELD OF THE INVENTION




The present invention related generally to steel beams and, more particularly, to a modular steel beam that can be assembled in place.




BACKGROUND OF THE INVENTION




Trends in residential building call for large, open spaces and high ceilings, creating a demand for structural members that provide higher strength and greater stability over longer spans than conventional lumber. Engineered lumber, such as wood I-beams, laminated veneer lumber (LVL), and glulam beams, are often used in place of conventional lumber in residential designs where high loads and/or long spans are present. Engineered lumber, however, is more expensive than conventional lumber and, therefore, increases the cost of construction. Also, engineered lumber is frequently custom-designed for a particular application, creating a logistical problem for the builder, who must coordinate the design, manufacture, and transportation of the engineered lumber to the work site.




Structural steel, such as steel trusses and I-beams, provide another alternative to conventional lumber in residential designs where high loads and/or long spans are present. Steel members are relatively inexpensive and come in a wide variety of sizes and shapes which are readily available. However, large steel members can be difficult to handle due to their size and weight. Oftentimes, special equipment such as cranes or other lifting equipment is needed to put steel members in place.




Accordingly, there is still a need for structural members for residential construction that provide greater strength and stability over long spans than conventional lumber, yet are relatively inexpensive, readily available, and easily handled on the work site.




BRIEF SUMMARY OF THE INVENTION




The present invention is a modular steel I-beam that can be assembled in place at a construction site. In one embodiment, the modular I-beam comprises a plurality of nested steel channels fastened to a central beam made of wood to form an I-beam. The builder chooses the size and number of steel channels to fasten to the central beam depending upon the requirements of a particular application. The steel channels may be combined in a variety of ways, allowing the builder to effectively build a custom designed I-beam for a given application.




In one exemplary embodiment of the invention, the nested channels are provided in paired sets. Each paired set comprises an outer channel and an inner channel. The outer and inner channels each comprise two flanges connected by a central web. The outer ends of the flanges are angled inwardly toward a midline of the channel. In the preferred embodiment, the flanges of the inner channel angle outwardly such that the flanges of the inner channel bear against the flanges of the outer channel. This arrangement makes the inner channel self-aligning with respect to the outer channel and facilitates assembly at the construction site. The inner channel effectively snaps into the outer channel and the angle on the outer end of the flanges for the outer channel helps retain the inner channel in a nested position.




An I-beam may be constructed by arranging two paired channels on each side of a central beam. Additional paired channels can then be nested inside the first set of paired channels. The nesting of paired channels may continue until a beam with the desired strength characteristics is formed.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a cross-sectional view of the modular I-beam of the present invention.





FIG. 1A

is a cross-sectional view of the moldular I-beam having a closure channel extending around one side of the beam.





FIG. 2

is an exploded cross-section of a channel pair used to make the modular I-beam of the present invention.





FIGS. 3A-3C

illustrate how the modular I-beam of the present invention is assembled in place.





FIG. 4

is a side elevational view of a single channel pair used to make the modular I-beam.











DETAILED DESCRIPTION OF THE INVENTION




Referring now to the drawings, and particularly to

FIG. 1

, the modular I-beam of the present invention is shown therein and indicated generally by the numeral


10


. The modular I-beam


10


comprises a plurality of nested channels


20


,


40


, disposed in back-to back relation to one another and fastened to a central beam


12


made of wood or other suitable materials. It should be pointed out that the nested channels


20


,


40


can themselves be disposed in back-to-back relationship. That is, in some designs, such as where an all steel construction is desired, the central beam


12


would be unnecessary. The nested channels


20


,


40


are grouped into two sets. One set of nested channels


20


,


40


forms one side of the modular I-beam and the other set of nested channels


20


,


40


forms the opposite side of the modular I-beam


10


. In the embodiment shown in

FIG. 1

, the nested channels


20


,


40


are secured to the central beam


12


by threaded fasteners


14


that passed through aligned openings in the nested channels


20


,


40


. The threaded fasteners


14


may, for example, comprise a conventional bolt and nut. Other types of fasteners, such as nails, rivets, or screws, may be used to secure the nested channels


20


,


40


to the central beam


12


.




Each set of nested channels


20


,


40


comprises one or more channel pairs


50


. In

FIG. 1

, there are three channel pairs


50


within each set of nested channels. The number of channel pairs


50


needed will depend on the strength requirements of a particular application. In general, a modular I-beam constructed in accordance with the present invention may have one or more channel pairs


50


.





FIG. 2

is an exploded cross-sectional view of a single channel pair


50


. The channel pair


50


comprises an outer channel


20


and an inner channel


40


. Both channels


20


,


40


are formed from a particular gauge steel, such as a 10-gauge steel. The outer channel


20


comprises a top flange


22


and a bottom flange


24


connected together by a central web


26


. The top flange


22


and bottom flange


24


may include an outer end portion


28


that angles inwardly toward a midline of the channel


20


at an angle of approximately 15°. The angled end portions


28


provide greater strength and rigidity to the I-beam


10


. While the top flange


22


and bottom flange


24


both include angled end portions


28


in the disclosed embodiment, such is not required. Alternatively, only the top flange


22


could include an angled end portion


28


and, in any case, the angle may vary.




Channel


40


also comprises a top flange


42


and bottom flange


44


connected by a central web


46


. The top flange


42


and bottom flange


44


, angle outwardly at a slight angle away from the center line of the channel


40


. In the disclosed embodiment, the top flange


42


and bottom flanges


44


form an angle of approximately 90° with the central web


46


. Top flange


42


and bottom flange


44


may include an outer end portion


48


that angles inwardly toward the midline of the channel


40


. Outer end portions


48


form an angle of approximately 60° to the top and bottom flanges


42


and


44


. While the top flange


42


and bottom flange


42


both include angled end portions


48


, such is not required. Alternatively, only the top flange


42


could include an angled end portion


48


.




In the preferred embodiment of the invention, the inner channel


40


is sized to fit into the outer channel


20


in a nested fashion with the top and bottom flanges


42


and


44


of the inner channel


40


bearing against the top and bottom flanges


22


and


24


of the outer channel


20


to help align the inner channel


40


with respect to the outer channel


20


. The inner channel


40


and outer channel


20


include a series of aligned openings


52


. The function of the aligned openings


52


is to receive fasteners, such as threaded fasteners, nails, or screws. The aligned openings


52


may be of varying size. For example, some of the aligned openings


52


may be designed to receive nails used to tack the channels


20


,


40


to the central beam


12


during assembly of the beam


10


, as will be hereinafter described. Some of the aligned openings


52


may be larger and adapted to receive the threaded fasteners


14


which provide the primary securing force for holding the parts of the modular I-beam


10


together.




Channels


20


,


40


may come in a wide variety of sizes. Table 1 below gives dimensions for three exemplary channel pairs


50


. The dimensions A, B, C, and D are labeled in FIG.


2


.












TABLE 1











Dimensions for Representative Channel Pairs
















Outer Channel 20





Inner Channel 40

















A




B




C




D




















13.25




3.5




12.597




3.375







11.25




3.5




10.597




3.375







9.25




3.5




8.597




3.375















Using the present invention, a modular I-beam meeting desired size and strength requirements can be assembled on site. To assemble a modular I-beam


10


, the central beam


12


is first put in place and secured by any suitable means. Once the central beam


12


is in place, channel members


20


,


40


may be secured to the central beam


12


one at a time as shown in

FIGS. 3A-3C

. In

FIG. 3A

, the outer channel


20


of a first channel pair


50


is attached on each side of the central beam


12


. The outer channel


20


may be held in place temporarily by nails that pass through openings


52


in the channel


20


into the central beam


12


. Once the outer channel


20


is secured to the central beam


12


, the matching inner channel


40


is inserted into the outer channel


20


and tacked in place using nails or screws. Additional channel pairs


50


, each one getting progressively smaller than the previous one, may be added to the modular I-beam


10


until the desired strength requirement is met.

FIGS. 3B and 3C

show the addition of second and third channel pairs


50


respectively to the modular I-beam


10


. Each time a channel


20


,


40


is added to the modular I-beam


10


, it may be tacked in place using nails or screws. Once all the desired channels


20


,


40


are put in place, they may be secured in place by threaded fasteners


14


as shown in FIG.


1


.




It is contemplated that the channel members


20


,


40


according to the present invention will come in certain standard lengths. For long spans, it may be necessary to put channel members


20


,


40


end-to-end to construct a modular I-beam


10


for a long span. When constructing a modular I-beam


10


for a long span, it may be desirable to offset the inner channel joints and the outer channel joints in each channel pair


50


. This technique of offsetting joints is shown in

FIG. 4

, which shows a side elevational view of a single channel pair


50


. As shown in

FIG. 4

, the joints


34


between adjacent channel members


20


is offset with respect to the joints


54


of adjacent inner channel members


40


. Offsetting joints


34


and


54


in this manner provide greater strength and stability.





FIG. 1A

illustrates an alternative design for the modular I-beam


10


. A closure channel, indicated generally by the numeral


60


, extends around one side of the beam


10


and basically encloses the sets of nested channels disposed on one side of the beam. It should be appreciated, that the closure panel


60


can be utilized on either side of the beam and in some cases may even be employed on both sides of the beam. While closure channel


60


may be constructed of various materials, it is contemplated that the closure channel


60


would be constructed of steel. As illustrated in

figure 1A

, the closure


60


includes a face plate


62


, and upper and lower plate


64


and


66


. Plate


62


,


64


and


66


can be connected by various means such as weldment or by bolt assemblies. To secure the closure channel


60


to the beam


10


, the upper and lower plate


64


and


66


are provided with spaced apart pre-drilled holes. A series of nails


68


extend downwardly through the drilled holes into the central beam


12


. If the central beam


12


is not present, the upper and lower plate


64


and


66


can be screwed to the top and bottom flanges of one of the nested channels.




In the case of the modular I-beam


10


shown in

FIG. 1A

, joists can be connected in a flush condition directly to the face plate


64


. This design offers advantages and conveniences in certain situations. For example, by connecting joists flush to the beam


10


, the beam


10


and joists lie in substantially the same plane, thus obviating the necessity of boxing in and finishing around the beam, and in the case of ceiling joists, avoiding the beam being disposed below the ceiling. In the case of the design of

FIG. 1

, where there is no closure channel


60


, the beam


10


is utilized in what is referred to as a drop header condition. Here the joists simply set on top of the beam


10


.




In the embodiment illustrated herein, the modular I-beam


10


is shown to include a central beam


12


made of wood or other suitable material. It should be appreciated that the modular I-beam


10


of the present invention may simply comprise a plurality of nested channels that are secured in back-to-back relationship without the presence of a central beam being interposed between the channels. Further, the channels have been described as being nested together. This means one channel within another and does not imply that the flange portions of any nested pair must engage each other.




The present invention may, of course, be carried out in other specific ways than those herein set forth without departing from the scope and the essential characteristics of the invention. The present embodiments are therefore to be construed in all aspects as illustrative and not restrictive and all changes coming within the meaning and equivalency range of the appended claims are intended to be embraced therein.



Claims
  • 1. A modular I-beam comprising:a. a first set of elongated nested channels; b. a second set of elongated nested channels disposed in back-to-back relation with said first set of elongated nested channels; c. each channel including a web; d. a central beam disposed between the first and second sets of nested channels; and e. one or more fasteners extending through the webs of the channels and securing said first and second sets of elongated nested channels together.
  • 2. The modular I-beam of claim 1 wherein said first and second sets of nested channels are constructed of steel and comprise at least one channel pair.
  • 3. The modular I-beam of claim 2 wherein each said channel pair comprises an outer channel and an inner channel, said outer and inner channels each comprising a top flange, a bottom flange, and a central web connecting said top and bottom flanges.
  • 4. The modular I-beam of claim 3 wherein said top flange of each said outer channel includes an outer end portion that angles inwardly towards a midline of said channel.
  • 5. The modular I-beam of claim 4 wherein said bottom flange of each said outer channel includes an outer end portion that angles inwardly towards a midline of said channel.
  • 6. The modular I-beam of claim 4 wherein said top flange of each said inner channel includes an outer end portion that angles inwardly towards a midline of said channel.
  • 7. The modular I-beam of claim 6 wherein said bottom flange of each said inner channel includes an outer end portion that angles inwardly towards a midline of said channel.
  • 8. The modular I-beam of claim 6 wherein the angle of inclination of said outer end of said inner channel is greater than the angle of inclination of said outer end of said outer channel.
  • 9. The modular I-beam of claim 3 wherein said top and bottom flanges of said inner channels angle outwardly away from a midline of said channel to engage said top and bottom flanges respectively of said outer channel.
  • 10. The modular I-beam of claim 2 wherein said first and second sets of channels each comprise at least two pairs of channels.
  • 11. The modular I-beam of claim 1 wherein said fasteners comprise nails that pass through said channels into said central beam.
  • 12. The modular I-beam of claim 1 wherein said channels in said first set of channels include one or more aligned openings to receive said fasteners.
  • 13. The modular I-beam of claim 12 wherein said channels in said second set of channels include one or more aligned openings to receive said fasteners.
  • 14. The modular I-beam of claim 13 wherein said fasteners comprise threaded fasteners that pass through said aligned openings in said first and second sets of channels.
  • 15. The modular I-beam of claim 13 wherein said openings in said first set of channels align with said openings in said second set of channels.
  • 16. The modular I-beam of claim 1 wherein at least one channel in each set of nested channels includes a top flange with an outer end portion that angles inwardly toward a midline of said channel.
  • 17. The modular I-beam of claim 16 wherein the outermost channel in each set of nested channels includes a top flange with an outer end portion that angles inwardly toward a midline of said channel.
  • 18. The modular I-beam of claim 1 including at least one plate for permitting joists to be flush mounted to the modular I-beam.
  • 19. The modular I-beam of claim 1 including at least one closure channel extending at least partially around one of said first and second sets of nested channels.
  • 20. The modular I-beam of claim 19 wherein the closure channel includes an outer face plate for permitting joists to be flush-connected thereto.
  • 21. The modular I-beam of claim 19 wherein the closure channel includes an outer face plate and upper and lower plates with the upper and lower plates being connected at generally top and bottom areas of the I-beam.
  • 22. The modular I-beam of claim 21 further comprising a central beam disposed between said first and second sets of channels and wherein the upper and lower plates of the closure channel are secured to the central beam.
  • 23. A modular I-beam comprising:a) a central beam; b) a first set of elongated nested channels disposed on one side of said central beam; c) a second set of elongated nested channels disposed on a second side of said central beam and oriented in a direction opposite said first set of elongated nested channels; and d) one or more fasteners securing said first and second sets of elongated nested channels to said central beam.
  • 24. The modular I-beam of claim 23 wherein said first and second sets of nested channels comprise at least one channel pair.
  • 25. The modular I-beam of claim 24 wherein each said channel pair comprises an outer channel and an inner channel, said outer and inner channels each comprising a top flange, a bottom flange, and a central web connecting said top and bottom flanges.
  • 26. The modular I-beam of claim 25 wherein said top flange of each said outer channel includes an outer end portion that angles inwardly towards a midline of said channel.
  • 27. The modular I-beam of claim 26 wherein said bottom flange of each said outer channel includes an outer end portion that angles inwardly towards a midline of said channel.
  • 28. The modular I-beam of claim 26 wherein said top flange of each said inner channel includes an outer end portion that angles inwardly towards a midline of said channel.
  • 29. The modular I-beam of claim 28 wherein said bottom flange of each said inner channel includes an outer end portion that angles inwardly towards a midline of said channel.
  • 30. The modular I-beam of claim 28 wherein the angle of inclination of said outer end of said inner channel is greater than the angle of inclination of said outer end of said outer channel.
  • 31. The modular I-beam of claim 25 wherein said top and bottom flanges of said inner channels angle outwardly away from a midline of said channel to engage said top and bottom flanges respectively of said outer channel.
  • 32. The modular I-beam of claim 24 wherein said first and second sets of channels each comprise at least two pairs of channels.
  • 33. The modular I-beam of claim 23 wherein said channels in said first set of channels include one or more aligned openings to receive said fasteners.
  • 34. The modular I-beam of claim 33 wherein said channels in said second set of channels include one or more aligned openings to receive said fasteners.
  • 35. The modular I-beam of claim 34 wherein said openings in said first set of channels align with said openings in said second set of channels.
  • 36. The modular I-beam of claim 23 wherein said fasteners comprise threaded fasteners that pass through said aligned openings in said first and second sets of channels.
  • 37. The modular I-beam of claim 23 wherein said fasteners comprise nails that pass through said channels into said central beam.
  • 38. The modular I-beam of claim 23 wherein at least one channel in each set of nested channels includes a top flange with an outer end portion that angles inwardly toward a midline of said channel.
  • 39. The modular I-beam of claim 38 wherein the outermost channel in each set of nested channels includes a top flange with an outer end portion that angles inwardly toward a midline of said channel.
  • 40. The modular I-beam of claim 23 including at least one plate for permitting joists to be flush-mounted to the modular I-beam.
  • 41. The modular I-beam of claim 40 wherein the plate forms a part of a closure panel that extends at least partially around one of said first and second sets of nested channels.
  • 42. A modular I-beam of claim 41 wherein the closure channel includes an upper plate and a lower plate and wherein the upper and lower plates are secured to the central beam.
  • 43. A method of constructing a modular I-beam, said method comprising:a. forming a first set of elongated nested channels; b. forming a second set of elongated nested channels; c. disposing said first and second sets of elongated nested channels in back-to-back relation to one another; d. disposing a central beam between the two sets of nested channels; and e. fastening said first and second sets of elongated nested channels together by inserting at least one fastener through webs that form a part of each set of nested channels.
  • 44. The method of claim 43 wherein forming said first and second sets of nested channels comprises nesting an inner channel inside an outer channel to form at least one channel pair.
  • 45. The method of claim 44 further comprising angling the top and bottom flanges of said inner channel outwardly from a midline of said inner channel to engage top and bottom flanges respectively of said outer channel.
  • 46. The method of claim 43 wherein each said nested channel comprises a top flange, a bottom flange, and a central web connecting said top and bottom flanges.
  • 47. The method of claim 46 further comprising bending an outer end portion of the top flange for at least one of said nested channels inwardly toward a midline of said channel to increase the strength of said modular I-beam.
  • 48. The method of claim 47 further comprising bending an outer end portion of the top flange for each said nested channel inwardly toward a midline of said channel to increase the strength of said modular I-beam.
  • 49. The method of claim 46 further comprising bending an outer end portion of said top and bottom flanges for at least one of said nested channels inwardly toward a midline of said channel to increase the strength of said modular I-beam.
  • 50. The method of claim 43 further comprising:a) forming aligned openings in said nested channels; b) inserting said fasteners through said aligned openings to secure said first and second sets of nested channels to said central beam.
  • 51. The method of claim 50 wherein said first and second sets of channels are fastened to said central beam by threaded fasteners.
  • 52. The method of claim 50 wherein said first and second sets of channels are fastened to said central beam by nails.
  • 53. The method of claim 50 wherein said first and second sets of channels are fastened to said central beam by screws.
  • 54. The method of claim 43 further comprising:a. forming aligned openings in the webs of said nested channels; and b. inserting a series of fasteners through said aligned openings in the webs to secure said first and second sets of nested channels together.
  • 55. The method of claim 54 wherein said first and second sets of channels are fastened together by threaded fasteners that pass through said aligned openings in said nested channels.
  • 56. The method of claim 43 including securing at least one member to the modular I-beam for permitting joists to be flush-mounted to the member.
  • 57. The method of claim 43 including extending a plate outwardly of one of the first and second sets of channels such that joists can be flush mounted to the plate.
  • 58. The method of claim 43 including extending a support structure around one of said first or second sets of channels such that the support structure may be utilized to mount joists thereto.
  • 59. A modular I-beam comprising:a. a first set of nested channels; b. a second set of nested channels disposed in back-to-back relationship with said first set of nested channels; c. each of said first and second sets of channels comprising at least two pairs of channels; and d. one or more fasteners securing said first and second sets of nested channels together.
  • 60. The modular I-beam of claim 59 wherein each said channel pair comprises an outer channel and an inner channel, said outer and inner channels each comprising a top flange, bottom flange, and a central web connecting said top and bottom flanges.
  • 61. The modular I-beam of claim 59 wherein said channels in said first and second sets of channels include one or more aligned openings; and wherein said fasteners comprise threaded fasteners that pass through said aligned openings in said first and second sets of channels.
  • 62. A method of constructing a modular I-beam, comprising:a. forming a first set of nested channels; b. forming a second set of nested channels; c. disposing said first and second sets of nested channels in back-to-back relation to one another; d. inserting a central beam between said first and second sets of channels; e. fasatening said first and second sets of channels to said central beam.
  • 63. The method of claim 62 further comprising forming aligned opening in said nested channels; and inserting said fasteners through said aligned openings to secure said first and second set of nested channels to said central beam.
US Referenced Citations (21)
Number Name Date Kind
518645 Emery Apr 1894 A
542283 Rousseau Jul 1895 A
991603 Brooks May 1911 A
1344229 Hutchinson Jun 1920 A
1900541 Buelow et al. Mar 1933 A
3328931 Smith Jul 1967 A
3483665 Miller Dec 1969 A
4002000 Howard et al. Jan 1977 A
4794745 Platt et al. Jan 1989 A
4893961 O'Sullivan et al. Jan 1990 A
5287675 McGee Feb 1994 A
5388527 Thornton Feb 1995 A
5394906 Farley Mar 1995 A
5517796 Koski et al. May 1996 A
5544459 Konger Aug 1996 A
5553437 Navon Sep 1996 A
5904022 Zadok May 1999 A
6161361 Ehrenkrantz Dec 2000 A
6256958 Matthews Jul 2001 B1
6360510 Woodrum et al. Mar 2002 B1
6561736 Doleshal May 2003 B1