The disclosed system and method relate to impactors for implants. More specifically, the disclosed system and method relate to a modular impactor head for an implant impactor.
Medical implants that are to be received within an intramedullary canal are frequently installed with the aid of tools for creating the intramedullary canal and inserting the implant within the canal. Such insertion tools include implant impaction instruments referred to as “impactors”.
Conventional impactors have a load transfer member fixed to a handle. Typically, the load transfer device is fixed to the handle by cross-pinning the load transfer device to an impactor head. However, the load transfer members have a high incidence of wear, which has prompted the development of modular assemblies. These modular assemblies typically employ a set screw assembly to maintain the load transfer member coupled to the impactor head. While these modular assemblies enable the load transfer members to be replaced when worn, the set screw assemblies are highly susceptible to fatigue, which may result in failure.
Additionally, conventional impactor handles are frequently fabricated from metals due to the high structural integrity and the ability to machine and weld metals to form the desired device. However, forming impactor handles from metals results in the impactor having considerable weight and may be difficult for less strong surgeons to manipulate.
Accordingly, an improved impactor design is desirable.
A modular impactor head is provided including a load transfer member, a base, and a locking assembly. The base defines a space sized and configured to receive the load transfer member therein and to constrain movement of the load transfer member relative to the base in a plurality of directions. The locking assembly is sized and configured to constrain the movement of the load transfer member with respect to the base in at least one direction such that the load transfer member is fixed to the base.
Also disclosed is a modular impactor head including a load transfer member and a base including a plurality of sidewalls. The sidewalls extend from a bottom wall of the base to define a space sized and configured to receive the load transfer member. At least two of the sidewalls define slots and the bottom wall defines a cavity. The slots of the sidewalls are sized and configured to cooperate with tabs extending from the load transfer member. A locking assembly is sized and configured to be received within the cavity and to lock the load transfer member to the base.
A method is also disclosed in which a biasing member is inserted into a cavity defined by a bottom wall of a body of a modular impactor head. The modular impactor head includes a plurality of sidewalls extending from the bottom wall. A space is defined by the plurality of sidewalls and the bottom wall. A locking shaft is inserted into the cavity, and a tab extending from a surface of a load transfer member is aligned with a slot defined by one of the sidewalls. The load transfer member is inserted into the space in a first direction such that the tab is received within the slot. The load transfer member is slid in a second direction until the locking shaft is received within a hole defined by the load transfer member.
These and other features and advantages of the present invention will be more fully disclosed in, or rendered obvious by the following detailed description of the preferred embodiments of the invention, which are to be considered together with the accompanying drawings wherein like numbers refer to like parts and further wherein:
This description of preferred embodiments is intended to be read in connection with the accompanying drawings, which are to be considered part of the entire written description. The drawing figures are not necessarily to scale and certain features of the invention may be shown exaggerated in scale or in somewhat schematic form in the interest of clarity and conciseness. In the description, relative terms such as “horizontal,” “vertical,” “up,” “down,” “top,” and “bottom” as well as derivatives thereof (e.g., “horizontally,” “downwardly,” “upwardly,” etc.) should be construed to refer to the orientation as then described or as shown in the drawing figure under discussion. These relative terms are for convenience of description and normally are not intended to require a particular orientation. Terms including “inwardly” versus “outwardly,” “longitudinal” versus “lateral,” and the like are to be interpreted relative to one another or relative to an axis of elongation, or an axis or center of rotation, as appropriate. Terms concerning attachments, coupling, and the like, such as “connected” and “interconnected,” refer to a relationship wherein structures are secured or attached to one another either directly or indirectly through intervening structures, as well as both movable or rigid attachments or relationships, unless expressly described otherwise. The term “operatively connected” is such an attachment, coupling or connection that allows the pertinent structures to operate as intended by virtue of that relationship.
As best seen in
Sidewall 118 includes a slot 140 disposed approximately at the midpoint between sidewall 114 and sidewall 116. In some embodiments, slot 140 extends from distal edge 124 to bottom wall 126. Still referring to
As best seen in
Referring again to
To assemble impactor head assembly 102, biasing member 172 is inserted into cavity 136 defined by base 106 as illustrated in
Load transfer member 108 is then loaded into the space 186 defined by sidewalls 114-120 of base 106 by aligning rectangular protrusion 160 of load transfer member 108 with slot 140 defined by sidewall 118 of base 106 and aligning tabs 168 of load transfer member 108 with slots 122 defined by sidewalls 114 and 116 of base 106. As load transfer member 108 is slid into engagement with base 106 as shown in
Load transfer member 108, which may also include an alignment feature 190 in the form of a notch, scribe line, dimple, or other discernable indicia located approximately at a mid-point of the length, is slid relative to base 106 until alignment feature 190 is aligned with alignment feature 130 at which point detent 162 of load transfer member 108 is received within aperture 142 defined by sidewall 120 and tabs 128 of base 106 engage tabs 168 of load transfer member 108.
When the alignment features 130 and 190 are aligned, base 106 limits all but one degree of movement of load transfer member 108 as sidewalls 114, 116, and 120 and bottom wall 126 prevent rotation, movement towards base 106, and lateral movement in all directions except for one, i.e., movement towards sidewall 118. Additionally, tabs 128 and aperture 142 of base 106 prevent movement of load transfer member 108 away from base 106. Thus, the only direction in which load transfer member 108 may move with respect to base 106 when alignment features 130 and 190 are aligned is towards sidewall 118. However, the locking mechanism provided by biasing member 172, pin 174, and locking shaft 178 constrains the movement of load transfer member 108 from being slid in the direction of sidewall 118 such that load transfer member 108 is fixed to base 106. The locking mechanism engages load transfer member 108 by biasing member 172 forcing locking shaft 178 into hole 170 defined by the bottom surface 188 of load transfer member 108 as best seen in
Impactor head 102 may be sterilized using an autoclave or other device either before or after being assembled as will be understood by one skilled in the art. Slots 122 of base 106, channel 164 of load transfer member 108, and holes 132 and depressions 134 defined by base 106 communicate with each other to provide a conduit for fluid to exit the modular impactor head 102.
End 196 of body 192 defines a hole 202 adjacent to opening 194 as illustrated in
Locking button 208 has a rectangular shape with a cross-sectional geometry that is complementary to the geometry of slot 204 with substantially flat front and back surfaces 212 and 214. An aperture 216 is formed through locking button 208 and includes a locking bar 218 along its inner surface 220 as best seen in
To assemble handle 104, a retaining pin biasing member 230, which may be a coil spring or other device for biasing or otherwise applying a force on a retaining pin 232, is inserted into hole 202. A locking bar biasing member 234 is inserted into slot 204 until it is received in cavity 206 as best seen in
As locking button 208 is further received in slot 204, groove 222, defined by locking button 208, aligns with hole 202b resulting in retaining pin 232 being received within groove 222 as retaining pin biasing member 230 applies a force on retaining pin 232 toward groove 222. Area 224 engages retaining pin 232 to maintain retaining pin 232 and retaining pin biasing member 230 within hole 202b as best seen in
Impactor 100 is assembled by coupling impactor head assembly 102 to handle 104 by inserting coupling member 110 of impactor head 102 into opening 194 of handle 104. As coupling member 110 slides into opening 194, body 144 of coupling member 110 contacts locking bar 218 of locking button 208, which results in locking button 208 being received more deeply within slot 204 until aperture 216 of locking button 208 aligns with opening 194. Locking bar biasing member 234 compresses from the force applied by locking button 208. When reduced diameter area 146 of coupling member 110 aligns with locking bar 218, which occurs when anti-rotation feature 198 of opening 194 aligns with corresponding geometry of shoulder 148, locking bar biasing member 234 forces locking bar 208 into engagement with reduced diameter area 146.
The engagement between reduced diameter area 146 and locking bar 208 prevents axial movement of impactor head assembly 102 along an axis defined by opening 194 with respect to handle 104 to maintain impactor head assembly 102 coupled to handle 104. The engagement between shoulder 148 of impactor head assembly 102 and anti-rotation feature 198 of handle 104 prevents rotational movement by impactor head 102 with respect to handle 104.
Once assembled, impactor 100 may be used as any implant impactor as would be understood by one skilled in the art. Impactor head 102 may be disconnected from handle 104 by applying a downward force on locking button 208, which forces locking button 208 deeper into slot 204, until aperture 216 aligns with opening 194 and then axially pulling impactor head 102 away from handle 104.
Load transfer member 108 may advantageously be replaced if it becomes worn. To remove load transfer member 108 from base 106, a thin rod (not shown) may be used through hole 170 to remove pin 174 from its engagement with slot 180 of locking shaft 176. With pin 174 disengaged from locking shaft 176, the thin rod may be inserted into hole 170 in load transfer member 108 to contact the end 184 of elongate body 178 and compress biasing member 172 until end 184 is disposed within cavity 136. With locking shaft 176 disposed within cavity 136, load transfer member 108 may be slid in the direction of sidewall 118 until detent 162 is disengaged from aperture 142 defined by sidewall 120 and tabs 168 of load transfer member 108 are disengaged from tabs 128 of body 106. Load transfer member 108 may then be removed from body 106 and replaced with another load transfer member 108 in accordance with the assembly process described above.
The modular impactor 100 described above may advantageously be fully disassembled and assembled while providing a more rugged and robust structure compared to conventional impactors that rely on set screw assemblies. Additionally, handle assembly 104, and more particularly handle body 192, may be advantageously machined or molded from carbon reinforced plastic, which enables the weight of impactor 100 to be significantly reduced while retaining sufficient structural integrity, as the impactor handle assembly 104 does not require welding to join different parts together. However, one skilled in the art will understand that handle body 192 may be fabricated from other materials such as, for example, metals and polymers.
Although the invention has been described in terms of exemplary embodiments, it is not limited thereto. Rather, the appended claims should be construed broadly, to include other variants and embodiments of the invention, which may be made by those skilled in the art without departing from the scope and range of equivalents of the invention.
This application is a continuation of U.S. patent application Ser. No. 14/295,972, filed on Jun. 4, 2014, which is a continuation of U.S. patent application Ser. No. 13/111,450, filed on May 19, 2011 claiming priority to U.S. provisional patent application 61/350,667, filed on Jun. 2, 2010, each of which is herein incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2674286 | Carson | Apr 1954 | A |
3618678 | Smith | Nov 1971 | A |
4581961 | Lai | Apr 1986 | A |
5100407 | Conrad et al. | Mar 1992 | A |
5571111 | Aboczky | Nov 1996 | A |
5630819 | Ashby | May 1997 | A |
5918821 | Grooms | Jul 1999 | A |
5934384 | Wang | Aug 1999 | A |
6367854 | Chou | Apr 2002 | B1 |
6890336 | Nordman | May 2005 | B2 |
7037310 | Murphy | May 2006 | B2 |
7115119 | Desarzens | Oct 2006 | B2 |
7247158 | Harris, Jr. | Jul 2007 | B2 |
7621921 | Parker | Nov 2009 | B2 |
8220135 | Vogel et al. | Jul 2012 | B2 |
8795287 | Fritzinger et al. | Aug 2014 | B2 |
20030229357 | Dye | Dec 2003 | A1 |
20070163084 | Liou | Jul 2007 | A1 |
20080097455 | Wright et al. | Apr 2008 | A1 |
20080308600 | Kana | Dec 2008 | A1 |
20090088757 | Tulkis | Apr 2009 | A1 |
20090099566 | Maness et al. | Apr 2009 | A1 |
20110083536 | Palmisano | Apr 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
20150230849 A1 | Aug 2015 | US |
Number | Date | Country | |
---|---|---|---|
61350667 | Jun 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14295972 | Jun 2014 | US |
Child | 14697144 | US | |
Parent | 13111450 | May 2011 | US |
Child | 14295972 | US |