The present invention refers to a modular intramedullary nail, more particularly to a modular femoral intramedullary nail comprising a nail which is composed of a proximal portion, a middle portion and a distal portion, said proximal portion having a longitudinal slot and said distal portion having at least one transversal bore.
So-called unreamed locking intramedullary nails have been used for the treatment of fractures of tubular bones for some time now. Lately, the indications of such intramedullary nails have been extended to include proximal fractures of the femur shaft, these fractures existing in a great diversity while their treatment is extremely complex. As a consequence, a great number of intramedullary nails have been developed which take into account the different types of fractures. These nails only distinguish themselves by the manner in which the proximal fixing screws are positioned according to the type of fracture. This leads to an expensive storage of a large number of nails and instruments. Furthermore, it is increasingly difficult for the surgeon and the nurses to master a great number of different implant systems in such a manner that an optimum treatment of fractures is ensured.
WO-94/13219 describes an unreamed intramedullary nail of modular structure which allows a considerable reduction of the number of required intramedullary nails by its diversity in use. The intramedullary nail is provided with a cylindrical sleeve which is adapted to be slid over its proximal end in a telescopic manner and whose design allows different modes of attachment in order to adapt the intramedullary nail to the required application. However, such a telescopic attachment is not optimal with respect to biomechanical aspects, which must be considered as essential on account of the great loads at the proximal femur, and furthermore, the proximal portion of the nail is additionally thickened by the attached sleeve, thus resulting in negative effects with respect to the vascularization of the neck area of the femur head. Finally, the telescopic attachment compulsorily lengthens the nail, resulting in a modification of its original length.
DE 85 33 134 U describes a device for treating a bone fracture, which comprises a proximal hollow portion accepting a threaded bolt for fixing a screw in a transversal slot. This device is designed for a particular type of fracture and does not permit the reduction of required intramedullary nails.
On the background of this prior art, it is the object of the present invention to provide a modular intramedullary nail and a relating method where the above-mentioned drawbacks are eliminated and which has an increased biomechanical stability and ensures a better vascularization. This object is attained by an intramedullary nail wherein the proximal portion comprises a longitudinal bore extending over the longitudinal extension of said slot in the distal direction and an insert which is intended to be inserted in said longitudinal bore, said insert comprising at least one guiding bore which is intended to receive fixing elements.
The invention is explained in more detail hereinafter with reference to drawings of several embodiments of the invention.
Nail 1 is essentially in the form of a cylindrical bar and may be divided into a proximal portion 2, a middle portion 3, and a distal portion 4. The illustrated nail for the femur is adapted to the anatomy of the femur and therefore curved according to a so-called antecurvation. The distal portion as well as the middle portion are so dimensioned that the nail can be introduced into the intramedullary channel without drilling by means of a guiding wire. Within other embodiments cannulated nails can be used.
Proximal portion 2 is cylindrical and is provided with a longitudinal bore 5 comprising a partial internal thread 6 whose core diameter is slightly greater than the diameter of longitudinal bore 5. Bore 5 serves to receive an insert 7 whose function will be explained later on. The proximal end 11 of the proximal portion comprises two guide grooves 12 which serve for the rotationally fixed guidance of the non-represented driving bow on which, according to the indication, the corresponding aiming appliance is fastened in an angularly stable manner. Therefore, at this end of longitudinal bore 5, the internal thread is omitted in order to prevent gripping between the grooves and the fastening screw of the aiming appliance.
Proximal portion 2 is further provided with a throughgoing slot 8 which extends in parallel to the longitudinal axis. A guiding pin 9, which serves for a rotationally fixed positioning of insert 7, is disposed inside longitudinal bore 5 and transversally thereto. Underneath longitudinal bore 5, which extends beyond the longitudinal extension of slot 8 in the distal direction, the proximal portion is provided with a transversal bore at its distal end.
Middle portion 3 and distal portion 4 of the nail have a smaller diameter than the cylindrical proximal portion 2. Cross-sections II—II and III—III show that the middle portion is provided at its proximal end with a wire groove 13 intended to receive a guiding wire, the wire groove extending from the distal portion to the proximal side and being inclined with respect to the longitudinal axis of the nail. As a consequence, wire groove 13 exits from the nail below proximal portion 4, as appears in
Bottom 14 of the groove (see
As already mentioned above, wire groove 13 and wire channel 13A are provided on distal portion 4, which means that the design of the guiding means for the guiding wire allows a nail which need not be entirely cannulated while the cross-section of the nail, which is smaller due to the wire groove, reduces the risk of a fat embolism in the course of the introduction of the nail.
However, in order to carry out the invention, it is not absolutely necessary to provide the middle and the distal portions with a wire groove and a wire channel. A central cannulation of the intramedullary nail is also possible.
The lower section of the distal portion is provided with transversal bores 15. Point 16 of the nail is parabolical in order to be passed over the line of fracture without a great resistance. Transversal bores 15, of which preferably at least two are provided, serve to receive the distal fixing screws 17. As the case may be, a non-represented longitudinal slot may additionally be provided on distal portion 4.
For the treatment of fractures in the central area of the shaft, the intramedullary nail according to
Longitudinal bore 5 is protected against an accretion of tissue into the threaded portion, which would impair the attachment of the explantation instrument, by means of a cap screw 21. Cap screw 21 is externally threaded and comprises a hexagonal socket 23 which allows to fasten the screw.
In the treatment of a fracture of the central shaft area, an active compression fixation can be effected by means of a compression screw 24 (see
As an essential extension of the field of applications of the intramedullary nail according to the invention, more particularly for an antegrade or a retrograde fixation, an insert 7 is provided which may either be hollow or solid in design. Insert 7 according to the embodiment shown in
Guiding bores 29, which are inclined with respect to the longitudinal axis, may have different diameters and serve to receive fixing screws 18 or fixing bolts 19. The insert further comprises a guiding groove 30 in which guiding pin 9 engages and thus ensures a correct introduction of the insert in such a manner that guiding bores 29 for the fixing screws are aligned with respect to slot 8 of the nail. In order to facilitate the insertion, the guiding groove is enlarged in the manner of a funnel at both its ends. For a retrograde fixation of the fracture, guiding bores 29 are preferably aligned at an angle of 120° to 150° with respect to the longitudinal axis, while they are preferably aligned at an angle of 125° to 150° with respect to the longitudinal axis in the case of an antegrade fixation.
Guiding pin 9 engaging guiding groove 30 can be replaced by other elements for preventing a misalignment of insert 7. These elements can especially be integrated into the implantation instrument.
The intramedullary nail shown and described is to be used for femur fractures. It is clear that the nail can also be provided for treatment of other fractures, e.g. fractures of the tibia or the humerus. The basic advantage of the modular system of this intramedullary nail using inserts which do not enlarge the space used for the nail is maintained.
It follows from the preceding description that a nail 1 as well as a limited number of inserts allow to treat all kinds of femur, tibia and humerus shaft fractures as well as the most different proximal femur, tibia or humerus fractures. Besides, the shape of the inserts and thus also of the longitudinal bore 5 receiving the insert is independent from the diameter or the length of the nail. Furthermore, there is no need for a left-hand and a right-hand form of the nail, which is an essential advantage with respect to the use and the storage of this implant. The corresponding left-hand or right-hand embodiment of the nail is determined by a mere 180° turn when introducing the insert. It further follows from the description that other embodiments of the intramedullary nail such as reconstruction nails can be used according to the inventive idea.
Although the invention herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present invention. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that other arrangements may be devised without departing from the spirit and scope of the present invention as defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
97810164 | Mar 1997 | EP | regional |
This application is a continuation of U.S. patent application Ser. No. 09/812,916, filed Mar. 20, 2001, now U.S. Pat. No. 6,569,165 which is a divisional of U.S. patent application Ser. No. 09/180,991, filed Jul. 21, 1999, now U.S. Pat. No. 6,228,086, which is a 371 of PCT/1B98/00406 filed Mar. 19, 1998 which claims priority from European patent application no. 97810164.0, filed on Mar. 19, 1997 , the disclosures of which are both hereby incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
4622959 | Marcus | Nov 1986 | A |
4733654 | Marino | Mar 1988 | A |
4805607 | Engelhardt et al. | Feb 1989 | A |
4875475 | Comte et al. | Oct 1989 | A |
5041115 | Frigg et al. | Aug 1991 | A |
5122141 | Simpson et al. | Jun 1992 | A |
5201735 | Chapman et al. | Apr 1993 | A |
5505734 | Caniggia et al. | Apr 1996 | A |
5549610 | Russell | Aug 1996 | A |
5573536 | Grosse et al. | Nov 1996 | A |
5653709 | Frigg | Aug 1997 | A |
5766174 | Perry | Jun 1998 | A |
5855579 | James et al. | Jan 1999 | A |
6106528 | Durham et al. | Aug 2000 | A |
6228086 | Wahl et al. | May 2001 | B1 |
20020029041 | Hover et al. | Mar 2002 | A1 |
Number | Date | Country |
---|---|---|
G 85 33 134.1 | May 1986 | DE |
G 94 01 916.9 | May 1994 | DE |
85 33134 | Apr 1996 | DE |
0 306 709 | Aug 1988 | EP |
0 550 814 | Nov 1992 | EP |
WO 9413219 | Jun 1994 | WO |
Number | Date | Country | |
---|---|---|---|
20030114855 A1 | Jun 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09180991 | US | |
Child | 09812916 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09812916 | Mar 2001 | US |
Child | 10354290 | US |