1. Field of the Invention
The present invention relates to endoprosthetic articular joint implants, and more specifically to methods and apparatus for performing surgical joint repair and replacement procedures using a modular joint implant with hydrogel articular surfaces.
2. Description of the Related Art
Prosthetic devices for joint repair and replacement in humans and other skeletal beings are known. Joint function can be lost due to fracture or damaged joint surfaces, for example. Joints compromised in these ways typically have suffered injury or disease. Repair often entails endoprosthetic implants installed in place of resected bone-ends to replace the damaged joint and restore joint function.
Joint-replacements are known that generally include an intramedullary stem anchoring a curved joint surface. U.S. Pat. No. 5,061,288 to Berggren et al. Berggren et al. discloses a joint implant that features a surface-replacing portion attached to the end of an axial support. Bristles extend radially from the axial support sufficient to be urged proximally upon insertion to the canal. The bristles consequently are biased against removal of the implant, thereby acting as barbs to anchor the surface-replacing portion of the implant on the end of resected bone. A joint-surface material features a dove-tail groove that engages a base with a corresponding pin attached to the axial support.
French patent document no. 2,605,878 in the name of Condamine discloses a two part joint prosthesis. Referring to FIGS. 1-3 of Condamine, the implant features an articulating surface portion that is adhered to a ribbed intramedullary stem. Another French patent document, no. 1,122,634 in the name of van Steenbrugghe discloses implants with coated spherical ends. The coating can include a polymer, such as Plexiglas, Lucite, polyamides (e.g., nylon), polyesters, and fluorethylenes, for example.
U.S. Pat. No. 5,314,486 to Zang et al. discloses a joint implant having an insertable bearing-surface. A non-bearing intermediate portion adds complexity and an additional implant that increases the number of potential problems that could lead to failure.
There is a need in the prior art for a simple but effective modular joint prosthesis that includes fixation elements supporting articulating surfaces with improved properties and materials.
The invention provides a modular endoprosthetic implant that features a hydrogel portion that simulates an articular surface. The hydrogel portion is supported by a fixation element that secures the modular endoprosthetic implant in place.
In an exemplary embodiment, the hydrogel portion locks onto a fixation element that includes a threaded anchoring-stem. The threaded anchoring-stem allows for insertion into an intramedullary canal, for example, to achieve implant fixation. Other forms of fixation are contemplated, including, without limitation, press-fit, interference fit, adhesives, etc.
The hydrogel portion is secured to the exemplary fixation element with the threaded stem by a snap-fit arrangement. The fixation element features a ball that extends from the fixation element on a side opposite the threaded stem. The hydrogel portion is part of an articular element that features a socket corresponding to the ball. The articular element is secured to the fixation element by way of a snap-on fit of the ball into the socket. The articular element articulates against normal opposing articulating cartilage surfaces, or against an opposing implant that provides a complementary replacement articular surface.
Other features and advantages of the present invention will become apparent from the following description of exemplary embodiments of the invention with reference to the accompanying drawings.
Referring to
Implant 4 includes a ball-shaped articular head portion 8 and a threaded stem 10. Head portion 8 is formed from molded hydrogel. Threaded stem 10 is titanium. A spherical ball-end 12 of the threaded stem 10 snap-fits into a socket 14 formed in ball-shaped head portion 8.
Similarly, implant 6 includes a cup-shaped molded hydrogel articular head portion 18 and a threaded stem 20. A spherical ball-end 22 of threaded stem 20 snap-fits into a socket 24 formed in cup-shaped head portion 18.
As can be seen more clearly in
Referring to
Referring to
Referring to
Referring more specifically to
The molded hydrogel articular portions 8, 18, 32, 42, 52 of the present invention are formed in an exemplary embodiment of Salubria, a trademarked product of SaluMedica LLC. Hydrogels are colloidal gels in which water is the dispersion medium. The Salubria hydrogel material in particular is described in U.S. Pat. Nos. 5,981,826 and 6,231,605, incorporated by reference. The hydrogel contains water in similar proportions to human tissue and is similar in its mechanical and physical properties. The hydrogel is an organic polymer-based biomaterial known to be highly biocompatible. Used in articular applications, the hydrogel material is soft and compliant like human tissue, and is exceptionally wear resistant and strong, making it an exemplary implant resource suitable for many medical applications.
The anchor posts 10, 20, 36, 46, 58, 60 are composed of titanium according to an exemplary embodiment, though other strong, biocompatible implant materials are known, including other metals, metal composites and alloys, and ceramics, for example.
Although the present invention has been described in connection with preferred embodiments, many modifications and variations will become apparent to those skilled in the art. It is not intended that the invention be strictly limited to the above-described and illustrated embodiments. Any modification, including those presently unforeseeable, of the invention that comes within the spirit and scope of the following claims should be considered part of the invention.
This application claims the benefit of U.S. Provisional Application Ser. No. 60/602,316, filed Aug. 18, 2004.
Number | Date | Country | |
---|---|---|---|
60602316 | Aug 2004 | US |