The invention relates to a modular LED light that is intended to replace, for instance, a fluorescent light or the like. Such a light has a plurality of light-emitting diodes (LEDs). As a rule, in previous LED lights of this type a continuous housing and a continuous cover for all parts of the light were used. Because of this, changes to the light were relatively complex, since, for example, the entire cover had to be removed. Moreover, it was a drawback of the known lights that they were not very flexible with respect to the arrangement of the LEDs.
The underlying object of the present invention is to improve a modular LED light such that it may be assembled in a simple manner and at the same time is simple to adapt in terms of the arrangement and number of LEDs.
According to the invention, this modular LED light is distinguished in particular in that it may be used, for example, in explosive regions and has at least one LED module and one central power supply module, wherein at least the LED module is detachably attached to a housing module of the LED light. According to the invention, such a housing module has two arrangement planes in vertical directions, wherein at least power supply connectors for the LED lights and connection lines to the central power supply module and to the LED module are arranged in the upper arrangement plane and LED module and a driver device are arranged in the lower arrangement plane. Furthermore, the invention is distinguished in that the housing module has at least one LED module receiving element that is arranged lateral to the central power supply module and in which is arranged an LED power supply interface for supplying electrical power to the LED module in its usage position.
Due to the different arrangement planes, an LED module may be easily exchanged for another, or an LED module may be easily replaced, without the upper arrangement plane in which the corresponding electrical power supplies are arranged having to be accessed. This is also true for the driver device in the central power supply module, the driver device also being arranged in the lower arrangement plane. Each LED module is essentially supplied power automatically in its usage position using contacting of the LED power supply interfaces.
A ballast, for instance, in particular an electronic ballast, is included in the specific driver device, and this ballast may simply be arranged in the central power supply module or may be part of the central power supply module.
In order to essentially also reproduce the length of a fluorescent light using the modular LED light, LED module receiving elements having an appropriate LED power supply interface may be arranged on both sides of the central power supply module. Each LED module, in its usage position, is then connected to the LED light via the corresponding LED power supply interface. The two LED module receiving elements are embodied such that each LED module is arranged in the lower arrangement plane.
In this context, it has furthermore proved advantageous when the corresponding driver device is detachably attached to the central power supply module. Because of this, the driver device may also be exchanged in a simple manner and, where necessary, replaced with another driver device. The appropriate driver device is also arranged in the lower arrangement plane, so that in the inventive LED light all corresponding modules, that is, LED modules and driver device are accessible from the bottom of the light.
In order to change the lighting characteristics of an LED module in a simple manner, a plurality of LEDs may be arranged in the LED module, in particular as LED conductor cards. Such an LED conductor card is distinguished in that the LEDs are arranged directly on a corresponding conductor card with conductors.
There is the option of changing the number of LEDs, or even the conductor cards that carry the LEDs, in a simple manner, both in terms of the number and in terms of the arrangement. The LEDs can emit light in a different manner, for example as white light with different shades of white or even as light in an appropriate color or with different colors.
In order to be able to furthermore appropriately adjust the light output, a light focusing device for light distribution may be associated with each LED or each group of LEDs. In this way it is possible to realize different lighting scenarios, such as, for example, lighting that is already spread out or narrowed floodlight-type lighting. An appropriate focusing device may be a lens device associated with each LED and/or a reflector device.
In order to be able to manage and exchange each LED module in a simple manner, it may also be advantageous when each LED module has a module housing that is made in particular of a thermally conductive material and has a cover that is transparent or translucent in the light emission direction. In this context the cover may also be embodied such that it influences the light distribution.
If the corresponding module housing is made of a thermally conductive material, it is possible to do without, for example, additional heat output devices such as fins, ventilation slits, and the like. However, with such a material it is also possible, for example, for bar-shaped cooling elements to be provided on the surface, ventilation slits, and/or ventilation channels.
In the most simple case, the module housing may be made of a thermally conductive plastic material and, where necessary, may have cooling fins or the like, in particular on its exterior, where necessary for enhancing heat output. With the module housing, care should be taken that it is tightly closed and contains all LEDs and associated conductor cards so that it satisfies explosion prevention requirements.
In order in particular to protect such a module housing of the LED module from external damage, the LED module may have a second, in particular shell-shaped, protective housing in which the module housing is arranged.
To simplify the process of installing the LED module on the LED module, the LED module may be snapped into its usage position, wherein an articulated device is embodied between LED module and housing module. That is, first a corresponding contact is produced by LED module and housing module via the articulated device and then the LED module is pivoted or snapped into its usage position.
In one simple exemplary embodiment, the articulated device may be formed between an outer edge of the housing module or the LED module receiving element and a top of the protective housing. Because of this, for example the module housing is further protected and is not used for connecting to the housing module. That is, the protective housing may also be used for different module housings that may be correspondingly used in the in particular shell-shaped protective housing.
One simple option for an appropriate articulated device may be that, for example, at least one articulated hook for suspending on the outer edge of the housing module or the LED module receiving element as part of the housing module projects from a top of the protective housing, by means of which articulated hook the protective housing or LED module may be pivoted into its usage position, wherein in the usage position an electrical connection is produced between LED module and LED power supply interface.
The corresponding protective housing may in particular be embodied such that it is shock resistant and/or impact resistant. This improves the protection of the module housing and the parts disposed therein. In addition, the protective housing may protect the module housing from mechanical stresses when mounting the housing module or during use in the LED light.
If there is a need, for example, to mount a plurality of LED lights directly adjacent or at least nearly adjacent, it may furthermore be advantageous if continuous wiring for connecting to further LED lights or the like is provided in the upper arrangement plane of the housing module. That is, one LED light is connected directly to a voltage source, wherein the latter may be connected via this LED light to other LED lights using the continuous wiring.
For example, if two LED module receiving elements are provided and only one LED module is in use, it may furthermore prove advantageous if the corresponding module receiving element is embodied to receive a blank cover, a battery module, or the like. That is, the corresponding LED module receiving element may also be used for other parts to the arrangement in the lower arrangement plane.
In order to permit cooling of the LED light in a simple manner, in particular the housing module may have air inlets and/or cooling fins in the region of the central power supply module. As a rule, the LEDs produce relatively little heat, wherein appropriate cooling may be performed in particular in the location where the driver device is arranged for supplying power to the LEDs, specifically in the central power supply module.
When the LED light is used in an explosive region, modules and electrical connection may be embodied in appropriate types of protection against ignition. It may be advantageous when the manner in which the modules are embodied in terms of protection against ignition is “intrinsically safe” in connection with the driver device in the central power supply module. The “increased safety” type of protection against ignition may be selected for the electrical connections between the modules and the type of protection against ignition may be embodied as “increased security” or “flameproof enclosure” for corresponding power supply connectors and/or LED power supply interfaces.
In order to be able to control the LEDs in the corresponding LED module in different manners, the LEDs in such an LED module may be arranged and/or wired in series and/or parallel.
The light emitted may also be influenced in that, for example, the LEDs are provided by group in one plane or in a curved arrangement in the LED module. Naturally both arrangements may be used adjacent to one another in order to permit different light distribution characteristics, for example.
It has already been indicated that a corresponding LED module is pivoted into its usage position. In order to secure this usage position of the LED module, the LED module may be detachably fixed in the usage position in particular using a locking device. One simple example of such a locking device is the use of at least one screw or the like in order to join, for example, the protective housing of the LED module to the LED module receiving element. This occurs without any effect on the module housing.
In this context, it may also prove advantageous if there is an interruption in voltage in a corresponding locking device and in particular when the latter is released, so that, for example, the locking device is coupled to a voltage interruption device.
It has already been mentioned that a cooling device, in the form of air inlets or cooling fins, may be provided in particular in the region of the central power supply module. To enhance this cooling, where necessary the central power supply module may have a cooling device. This cooling device may be active or passive. An active cooling device would be cooling using an electronic element, for instance, like Peltier cooling, and passive cooling may be embodied, for example, in a honeycomb structure.
In the present invention, providing an upper and lower arrangement plane is an advantage. To decouple these arrangement planes electrically even further, a separating metal sheet may be embodied between the first and second arrangement. This improves electromagnetic compatibility (EMC), for example.
It has already been indicated that the driver device may also be detachably arranged on the central power supply module. If such a driver device is not necessary as a separate part or is contained in an LED module, for example, it may also prove advantageous when the central processing module is embodied for receiving an additional LED module. In the simplest scenario, other LED modules may be arranged instead of the driver device.
With respect to the locking device, the use of one or a plurality of fastening screws that join the protective housing to the LED module or to the LED module receiving element has already been addressed. However, other locking devices are also possible, such as, for example, a locking rod that is pivotably mounted in the protective housing and that may be engaged with locking eyelets projecting from the LED module receiving element. That is, the locking rod is accessible from the outside and may be pivoted into a different position so that in a first pivot position it is engaged with the locking eyelets and in another pivot position it is disengaged. The LED module may be fixed in its usage position by pivoting the locking rod from the outside.
In order to improve the cooling of the LED modules, the housing module may have air slits/openings and or air conducting devices embodied between LED module and module housing, for instance air conducting fins, embodied in the region of the central power supply module and oriented in the direction of the LED module and in particular in the direction of openings in the protective housing. The air may exit at the ends or on the sides of the module housing, i.e. cooling air may be introduced at least into the protective housing from the central power supply module and where necessary may be output into the surroundings from there via further air outlet openings.
Advantageous exemplary embodiments of the invention shall be described in greater detail using the figures in the attached drawings.
On its top side 24 each LED module has an articulated device 23 (see also
The locking device 27 is arranged between the top 24 of each LED module 2, 3 and an outer edge 26, in particular of LED module receiving elements. In the exemplary embodiment depicted, it comprises at least one articulated hook 25 that overlaps the outer edge 26.
Moreover, it may be seen in particular in
Furthermore, corresponding power supply connections 9 may be see on the housing module 5. They permit insertion of connection lines from a voltage source in the central power supply module. The corresponding connection lines within the housing module 5 may also be passed through, i.e., may be guided out on the other side of the housing module 5 and may be used for connecting other LED lights 1 or the like.
The driver device 15 is provided in the central power supply module 4 according to
In addition, it may be seen from
Moreover, a light focusing device 18, which in the depicted exemplary embodiments 8 through 10 is associated with each LED in the form of a lens device, is associated with each LED or a group of LEDs.
It is also possible, for example, for the LEDs of a conductor card to be provided with a corresponding light focusing device 18 or for the transparent or translucent cover 21 alternatively or additionally to be embodied, at least at specific locations, as a corresponding light focusing device 18. Alternatively, the light focusing device may be formed by a reflector.
How the corresponding power supply connections 9 and connection lines 10 run in the upper arrangement plane 6 may be seen in particular in
The specific connections are embodied with appropriate types of protection against ignition for explosive regions. For example, the outputs of the driver devices may be embodied with the “intrinsic safety” and/or “increased safety” type of protection against ignition in order to provide different LED modules with different capacities. The LED modules be embodied in the “increased safety” type of protection against ignition, wherein electrical circuits of the LED modules may also be embodied in the “intrinsic safety” type of protection against ignition. The connection elements are embodied, for example, in the “increased safety” or “flame-proof” type of protection against ignition.
With respect to the LED conductor cards, it should also be noted that these may be switched both in series or parallel with one another. The light output is increased or decreased by varying the number of LEDs. Using the arrangement of the LEDs and the appropriate light focusing device it is possible to change the light distribution at a certain distance in the direction of light radiation 20 (see also
Even in such curved LED modules, at least two regions of the LED modules are embodied identically in order, on the one hand, to embody the articulated device 23 and, on the other hand, to be able to produce the electrical connection to the LED power supply interfaces.
If the locking rod 37 is pivoted counterclockwise through the outside use of a tool on the engagement head 44, the locking rods engage with the corresponding locking eyelets 37, so that the LED module 2 is fixed in its usage position. Reversing this process releases this usage position and the LED module.
The corresponding conductor cards 17 are fitted with a number of LEDs, wherein in this case an appropriate light focusing device 18 is associated with each LED 16. The module housing 19 is somewhat shell-shaped and has a cover 21 that closes a corresponding opening of the module housing. Seals 42 are arranged along edges of the cover 21.
In
Embodied on the top of the protective housing is at least one corresponding articulated hook 25 that is part of the articulated device 23 and that overlaps an outer edge in particular of the LED module receiving element 11 (see also
According to the invention, a modular LED light is provided that may be used in particular in explosive areas. All LEDs are housed in a sealed manner in their module housing and arranged in the corresponding protective housing with the module housing. This LED module put together in this manner may be arranged in the corresponding LED module receiving element 11 or 14 and may be fixed there in its usage position. The protective housing in particular provides protection from shocks and impacts and also from mechanical stresses, for instance after being installed in the housing module 5.
It is also possible to use the LED module receiving element 11 or 14 for arranging a blind cover, a battery, or other parts, instead of for an LED module 2 or 3. Likewise, instead of the driver device, it is possible to arrange another LED module on the central power supply module 4. In this case the driver device may be contained in an LED module, for example.
The protective housing is produced from a thermally conductive plastic material in order to appropriately draw heat away from the internal devices. This removal of heat may be improved, for example, using cooling fins on the protective housing and/or on the module housing. With respect to the articulated hook, it should be noted that as a rule more than one articulated hook is used, i.e., in particular two, three, or more articulated hooks are used.
With respect to the locking device 27, it should be noted that the latter may be coupled to a voltage interrupting device so that a voltage supply is only interrupted when an LED module is detached using the locking device. Conversely, a voltage supply is not restored unless the locking device is in its final locked position.
The honeycomb structure may be part of a housing of the central power supply module 4 in which the driver device may be used (see for example
Thus, according to the invention an LED light is provided that may be a replacement for fluorescent tubes and that is constructed modularly in order to be variable both with respect to quantity of light and light distribution. In addition, only the corresponding LED modules are exchanged and/or changed in their number. Moreover, each LED module may be fitted with LEDs differently. Between one and three LED modules may be used in the inventive LED light.
Number | Date | Country | Kind |
---|---|---|---|
10 2017 128 620.9 | Dec 2017 | DE | national |
This application is a continuation of U.S. patent application Ser. No. 16/768,757, which was filed Jun. 1, 2020, which is a US National Stage Application of International Application No. PCT/EP2018/025302, filed Nov. 28, 2018, which claims the benefit of DE 10 2017 128 620.9 filed Dec. 1, 2017, all of which are incorporated herein by reference in their entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
6264348 | Ellis | Jul 2001 | B1 |
20100315252 | Desphande et al. | Dec 2010 | A1 |
20110032696 | Kim et al. | Feb 2011 | A1 |
20120099317 | Liu | Apr 2012 | A1 |
20120218758 | Wang et al. | Aug 2012 | A1 |
20130033195 | Liao | Feb 2013 | A1 |
20140347853 | Avina | Nov 2014 | A1 |
20160327256 | Hall | Nov 2016 | A1 |
20160356475 | Honda et al. | Dec 2016 | A1 |
20170307149 | Clark et al. | Oct 2017 | A1 |
20170307204 | Cattoni | Oct 2017 | A1 |
20200011520 | Naumann et al. | Jan 2020 | A1 |
Number | Date | Country |
---|---|---|
201425234 | Mar 2010 | CN |
102012101411 | Aug 2013 | DE |
102014214816 | Feb 2015 | DE |
102015003114 | Sep 2016 | DE |
3217074 | Sep 2017 | EP |
Entry |
---|
International Search Report and Written Opinion for PCT Application No. PCT/EP2018/025302, dated Feb. 1, 2019, 9 pages, Rijswijk, Netherlands. |
Number | Date | Country | |
---|---|---|---|
20220243899 A1 | Aug 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16768757 | US | |
Child | 17660566 | US |