The present invention relates generally to automatic swimming pool cover systems, and more particularly, to a modular lid system having a hydraulic or pneumatic cylinder actuator for an underwater pool cover drum enclosure.
Automatic pool cover systems utilizing interconnected rigid buoyant slats, which roll up on a submerged or elevated drum as described by U.S. Pat. No. 3,613,126, to R. Granderath, are popular in Europe. These pool cover systems utilize passive forces arising from buoyancy or gravity for propelling, the cover to extend the cover across a pool. With either buoyancy or gravity, there must be some mechanism to prevent a retracted cover from unwinding responsive to the passive force. Such passive force systems also have a disadvantage in that the passive force must be overcome during retraction. Granderath suggests a worm gear drive mechanism for winding the cover and preventing cover drum rotation when not powered. The slats for these are further described in U.S. Pat. No. 4,577,352, to Gautheron.
U.S. Pat. No. 4,411,031 to Stolar describes a system similar to Granderath where instead of rigid hinged buoyant slats, various floating sheet materials such as a polyethylene polybubble, or a laminate of vinyl sheeting and foamed substrate, are floated on the surface of the water. The propulsion of the cover across the pool is reliant on buoyant and gravitational forces much like the system in the Granderath patent.
Pool covers which employ floating slats or similar materials, and which use buoyant forces to propel the cover across the pool, necessarily wind the cover onto a roller drum which is positioned above or below the water surface. In the case of covers wound onto a spool sitting above the edge of the pool, such as at one end or another, when the cover is fully wound onto the cover drum, the entire rolled up cover sits above the surface of the edge of the pool. In some cases, the cover and drum are located in a separate bench apparatus setting next to the pool. The design is to aesthetically hide the cover and roller drum and also allow the entire mechanism to be manually rolled backwards away from the end of the swimming pool.
Using a separated gear drive system with limit switches to travel such a limited distance is costly and it complicates timing of the two drive systems. Furthermore, these electric drives require the supply of electrical current right next to the swimming pool which poses the possibility of a shock safety hazard. Moreover, having the electrical apparatus near the pool accelerates corrosion of the electrical components, rendering them unreliable, as well as exposing the components to flooding and costly repair.
In many known European application of such hinged lid recess systems, the manual or automatic hinged lid is shortened or made somewhat narrower, so as to partially close the recess and leave a gap or aperture sufficient to allow the slatted cover to pass through. Typically the leading edge portion of the cover is not fully retracted beneath the lid, but left remaining partly above it, so as to permit the cover to lead properly through the aperture on the covering mode of travel, i.e., during putting on the pool cover. This is important because if the leading edge of the cover was not fed properly through the aperture and jammed there, the cover drive system, which would continue to unwind, would cause the cover slats to jam and damage underneath the lid.
Typical lid systems for underwater cover drum enclosures, which incorporate an aperture or opening for cover slates to pass through, are unattractive and also create a potential safety hazard. If a swimmer steps into the aperture and is trapped, injury and even drowning can result. Consequently, most American Health and Safety inspectors do not allow such aperture design in public and commercial pools, or even some residential pools.
Another problem with slatted cover systems, which emerge from beneath the pool floor or the pool side wall or generally below the water surface, is the difficulty maintaining correct slat orientation. The cover slats move vertically upward by buoyancy at the beginning of the cycle, break the water surface, and subsequently change direction to travel in a floating horizontal direction. Often difficulties arise in assuming and maintaining correct orientation. This is often solved by having the leading slat component section pre-bent or fixed in an orientation towards the desired direction of travel. Often this is not sufficient when the cover drum is one foot or more below the water surface and the cover will often sway back and forth below the water, making direction of travel upon breaking the surface of the water unpredictable. Another possible solution is to slow down the speed of emergence of the slatted cover during the unwinding cycle to gain sufficient control until the slats break the water surface, but results are still unpredictable absent a tracking or guide system to guide the leading edge of the cover in the desired direction.
German Patent DE 3032277 A1 to R. Granderath describes a pool floor lid covering system in which an air bladder induction system is introduced to open the lid prior to allowing the cover to unwind from the cover windup roller, and to close when the cover is fully retracted. German Patent DE 198 07576 A1 to Frey describes yet another mechanism to cover the pool cover roller mechanism located in the floor of the swimming pool wherein a floating door is moved vertically to the water surface by cables that are wound up on reels from the pool cover cavity in the floor. The system utilizes a worm gear reducer drive, similar to that used to drive the pool cover drum, to actuate the door closing system. This system is generally well known. Typically, the covering hinged lid system is actuated by means of a separate worm gear reducer drive powered by an electric motor and connected to the hinged lid shaft. Electric-mechanical limit switches devices are used to stop the rotary drives which subsequently engage and power the floating lid reels and the hinged lids, at the proper point of rotation.
Hinged lids would normally only have to rotate 40 to 60 degrees to create a sufficient aperture for the slatted cover to pass through on its way from beneath the pool floor to the water surface. Using a separated gear drive system with limit switches to travel such a limited distance is costly and it complicates timing of the two drive systems. Furthermore, these electric drives require the supply of electrical current right next to the swimming pool which poses the possibility of a shock safety hazard. Moreover, having the electrical apparatus near the pool accelerates corrosion of the electrical components, rendering them unreliable, as well as exposing the components to flooding and costly repair.
Another problem with powered floor lid systems is a safety hazard inherent in other types of automatic closing doors. The lid or closure device can potentially crush a swimmers limb that is inadvertently caught between the pool edge and the lid during the closing cycle of the lid or the closing device. For this reason, it is heretofore undesirable to utilize automatic doors or lids on underwater pool cover drum enclosures.
A problem with shaft operated in-floor or in-wall lid systems is that the speed at which the lid is operated can substantially increase structural requirements of the lid system. This is a particularly important consideration at the high torque starting point of the opening cycle when the lid is raised, i.e., rotated about a hinge from a horizontal to the vertical open position.
Another problem is that lid systems which require openings or apertures for allowing the lid to be delivered from the pool floor or an underwater bench design, need only be a gap of 6–12 inches wide, i.e., an opening rotation of the lid of approximately only between about 40–60 degrees. To service the system, however, full access below the lid is required. An opening of at least 24 inches, or enough to allow a person possibly in divers gear, to pass through safely, would be required. The lid may even have to be hinged in a way to rotate a full 90 degrees or more.
Although it would be possible to incorporate current sensing devices or other means to stop the cover when encountering resistence, it is very difficult to set an accurate and workable set point since the torque applied to the lid actuator shaft varies greatly as it passes from a maximum at the horizontal position, through to zero torque at the 90 degree or vertical lid position.
Known manual or automatic lid systems provided by European manufacturers are typically made of lightweight plastic construction, and have a single, unitary integral design. Such lids are typically unattractive and it is difficult to adhere plaster or tile to these plastic components to give the lid the same look or design as the rest of the pool. Furthermore, these lid systems usually employ a single heavy stainless steel shaft running the full width of the pool which has to be of sufficient diameter to be able to transmit torque yet prevent radial deflection of the shaft at the attachment of the furthermost portion of the lid away from the actuator, in order to prevent drooping of the lid.
A problem with shaft operated on-floor or in-wall lid systems is that the speed at which the lid is operated can substantially impact and add to structural requirements of the lid system. This is particularly so at the high torque starting point of the opening cycle when the lid is raised or rotated about the hinge from a horizontal to the vertical open position.
As described in several other applications and patents by the inventor, automatic cover drive systems have to be mounted next to the swimming pool and frequently below the pool deck surface. With the exception of hydraulic drive systems as described in the inventor's prior U.S. patent and applications, most floating and slatted cover systems use electric drive systems. This creates a potential shock hazard near the pool surface area and furthermore, when these systems are even briefly submerged, or flooded, expensive damage and repair costs are often required.
The inventor's previous U.S. Pat. No. 5,184,357 entitled AUTOMATIC SWIMMING POOL COVER WITH A DUAL HYDRAULIC DRIVE SYSTEM, and inventor's U.S. Pat. No. 5,546,751 entitled ANTI-CAVITATION MANIFOLD FOR DRIVE COUPLED, DUAL MOTOR, REVERSIBLE HYDRAULIC DRIVE SYSTEMS, are both incorporated herein in their entireties.
The present invention comprises a hydraulic or pneumatic cylinder actuator to the auxiliary lid cover mechanisms powered by means of a single physically remote power pack or electric fluid pump. The complete system hydraulics near the pool are supplied with only two hydraulic interchangeable supply and return lines to the physically remote power pack or electric fluid pump.
The proposed invention incorporates a standard hydraulic or pneumatic cylinder, where the full travel of the cylinder is sized to the arc of travel of the lever arm acting to move the pool floor lid system from the closed to the operational open position and uses the mechanical end travel of the cylinder and the consequent pressure surge to actuate a pressure switch and/or various sequencing valve means to actuate other components of the system in a timed and sequenced and velocity controlled manner.
It is an object and advantage of the present invention to provide a pool cover system in which the cover is rolled up on a spool or cover drum in an enclosed structure sitting on the floor of the pool, or enclosed within a pit underneath the surface of the pool.
A distinct advantage of the hydraulic or pneumatic cylinder means is that the end stop actuation or travel limiting means is now accomplished by utilizing the immediate fluid pressure surge or increase as the cylinder reaches its mechanical end of travel, and combining or utilizing this with a remote electro-hydraulic pressure switch at the remote power pack to either stop the power pack pump, or by means of a sequencing valve or a combination thereof, to advance to subsequent step in the pool cover operation and final operation of the steps needed to operate the complete system.
Another advantage of using a hydraulic or pneumatic actuator is the speed of the cylinder and consequently the linear velocity of the lid operation can be easily and simply controlled by a pressure valve and by timed fluid flow diversion, all using components that are not affected by moisture or compromising the safety of swimmers with a potential electric shock hazard.
Another advantage of using hydraulics or air means is that the speed of the cover drive tube can be easily temporarily slowed by using a valve connected to, and actuated through a timing device to bleed off part of the flow to die reservoir or tank, thereby slowing the cover drive tube, and hence, the overall speed of the moving bench enclosure.
It is yet another object and advantage of the present invention to provide a pool cover system in which the lid is modular, thereby eliminating the problems associated with buoyancy and torque along an elongated single-section pivot point hinge by providing a modular lid system, each individual modular panel element can be adjusted accurately so as to provide a lid system which has a predetermined buoyancy at one end and another, predetermined buoyancy at the other end, along with a drive gear located only at one end. Thus, in the present invention, by applying a torque at one end only, the rigid modular lid system will open along its entire length, in a uniform manner, eliminating lid droop at the far end as well as compensating for buoyancy of the lid along its entire length.
The description that follows is presented to enable one skilled in the art to make and use the present invention, and is provided in the context of a particular application and its requirements. Various modifications to the disclosed embodiments will be apparent to those skilled in the art, and the general principals discussed below may be applied to other embodiments and applications without departing from the scope and spirit of the invention. Therefore, the invention is not intended to be limited to the embodiments disclosed, but the invention is to be given the largest possible scope which is consistent with the principals and features described herein.
It will be understood that in the event parts of different embodiments have similar functions or uses, they may have been given similar or identical reference numerals and descriptions. It will be understood that such duplication of reference numerals is intended solely for efficiency and ease of understanding the present invention, and are not to be construed as limiting in any way, or as implying that the various embodiments themselves are identical.
The modular lid 101 is shown in the closed position, with the floating or other type of pool cover 103 wound into a roll, completely inside the automatic bench enclosure system 104. It will be understood that any type of pool cover 103 conventionally used or custom made can be used with the underwater pool cover system. However, principally these types of pool covers 103 are floating and may support an object or person standing on top of the closed cover. It will further be understood that such cover systems may include side tracks, grooves, anti-biasing or auto-aligning mechanisms for any of a variety of purposes, including but not limited to keeping the sides of the cover in a track or oriented in the proper direction, etc.
In this view, the modular lid 101 is in a partially open position, as shown, and the combination floating cover system 103 is slightly unwound and starts to float outside the automatic bench enclosure system 104 through the opening 118. In this view, it will be understood that the lid 101 is open at an angle θ, which operatively would be between about 40 degrees to about 60 degrees.
In this view, the modular lid 101 is in an open position and pool cover 103 is in the extended position. As shown, floating pool cover 103 lies on top of the surface of the water 114 across the entire swimming pool 102.
It will be understood that the modular lid 101 should open to a sufficiently higher angle so as to not rub excessively on the pool cover 103 as it winds or unwinds on the cover drum 202. furthermore, in general, the systems 104 are designed such that the fully unwound cover drum 202 is directly below the plane defined by the fully open lid cover 101.
It will be understood that while the hydraulic lines 108 are shown as single or double lines, in many cases it is desirable to use 4 or more hydraulic lines, additional actuators and/or a hydraulic fluid manifold. Such modifications in hydraulic line configuration and actuator control will be known to those skilled in the art.
It will be understood that the floating leading edge 114 of the pool cover 103 is optional, and often not necessary or desirable in floating slat as well as polybubble and other cover systems. It will also be understood that cover pit or enclosure 114 need not be excessively large, and in certain circumstances excessively large pit or enclosure 114 may result in premature or unintended unwinding, basically due to excessive floatation on one side or the other side and inadequate, non-uniform pool cover wrap.
In the preferred embodiment, distance between the two pool cover recess walls 302 should be larger than the diameter of the floating cover 103 to allow room for unwinding. Cover lid 101 is secured at the hinge point 308 for opening of the lid 101 to hinge plate 309 and spacers 304 with shoulder bolts. As shown in
It will be understood that in preferred embodiments, the buoyancy tank 412 can be omitted entirely, i.e., it is optional. In many cases, the buoyancy tank 412 will be unnecessary due to inherent buoyancy of the modular lid sections 602 or entire assembly 101.
Also shown in
Also shown in
Torsion chamber 404 is tack welded at weld spots 426 to the bottom of pan section 601, thus rendering the lid section 602 rigid and non-deforming. Tack welding is preferred to bolting to provide a rigid, non-moveable lid section 602.
Cylinder 522 is fixed to the pool floor 107 by hinged pin 520 and wall bracket 526. When the rod end 524 of the cylinder 522 extends or moves upwards, such as upon actuation of the modular lid 101, force is transmitted through pin 520 and spacer sleeve 518, and through to the side plates 502 and 508 and pin 504. Subsequently, rod end 524 pushes up against the actuator lever block 510 to lift lid section 602 upwards rotated on shaft 516.
It is also noted that the entire modular lid 101 will move upwards from the position indicated as A to the position indicated as B, or through angle θ of approximately 40–60 degrees. This angle θ is sufficient to create an opening 118 for the cover 103 to pass through. However, since the modular lid 101 is not connected directly to the cylinder 522 but to the shaft 516 and block 510, the lid 101 can continue to move independently, such as manually, through angle Δ to the position indicated as C. Thus, the modular lid 101 can be moved through angle θ as well as through angle Δ to create a greater opening for access if necessary.
It will be understood that opening the modular lid 101 to point B through angle θ can be done with the actuator 500. However, since the modular lid 101 is decoupled from the actuator 500, the lid 101 can be moved manually past point B through angle Δ. This additional movement of the lid 101 can be accomplished with a minimum of force or torque given the counterweighted and balanced set of individual lid sections 602, each optionally having their own buoyancy chamber portion 412.
By providing a lid actuator system which is decoupled from the lid section, i.e., bearing surface on actuator block 510, once the actuator piston 524 is retracted back into cylinder portion 522, the lid 101 will close under the force of gravity alone. As an additional safety measure, therefore, the lid 101 can be manually raised and lowered.
Also as shown, modular lid 101 can be lowered to the closed position A by the force of gravity. This safety feature guarantees that if the modular lid 101 were to meet an obstruction on the way down, such as a swimmer's limb or other obstruction, the cylinder rod 524 along with the attached plates 502 and 508 could continue to close under hydraulic pressure until the cylinder rod end 524 is fully retracted into the cylinder 522. In this design, the modular lid 101 could safely remain in partially open position such as at position B until the obstruction was cleared, at which time the modular lid 101 can then simply sink back down to a closed position A.
Modular lid sections 602 are mechanically jointed together to form a complete cover lid 101 by a plurality of gauge support plates 604 and L-shaped brackets 608. Gauge support plates 604 are inserted at holes or openings 606, which are located on both side panels 603 of each lid section 602. The plates 604 are inserted and bolted between adjacent lid sections 602. The base of L-shaped brackets 608 are secured at holes or openings 610, which are located on both sides of the top surface of lid sections 602. The flaps of L-shaped brackets 608 on adjacent lid sections 602 are bolted together at holes or openings 612. Having gauge support plates 604 and L-shaped brackets 608 alternatively running the entire length of each lid section 602, individual lid sections 602 are then bolted together to form a complete cover lid 101 that runs the full width of the swimming pool 102.
As shown best in
It will be understood that the modular lid 101 of the present invention avoids the use of a central, elongated shaft portion for opening the lid. As opposed to using a shaft portion which may twist and deform based on torsional forces acting thereon, the rigid lid sections 601 bolted together act as a rigid, composite beam or member, impervious to deformation, twisting and one-sided lid droop. the modular lid 101 comprised of individual lid sections 602 will behave similar to a rigid, non-deforming airplane wing. Therefore, the present invention can be shipped to a remote site and installed, without the need for shipping elongated, single reinforced or tapered shaft sections as well as entire lid sections 25 feet long or longer.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the present invention belongs. Although any methods and materials similar or equivalent to those described can be used in the practice or testing of the present invention, the preferred methods and materials are now described. All publications and patent documents referenced in the present invention are incorporated herein by reference.
While the principles of the invention have been made clear in illustrative embodiments, there will be immediately obvious to those skilled in the art many modifications of structure, arrangement, proportions, the elements, materials, and components used in the practice of the invention, and otherwise, which are particularly adapted to specific environments and operative requirements without departing from those principles. The appended claims are intended to cover and embrace any and all such modifications, with the limits only of the true purview, spirit and scope of the invention.
This Application is a Continuation-In-Part utility patent application related to U.S. patent application Ser. No. 09/829,801, filed Apr. 10, 2001, now U.S. Pat. No. 6,827,120, entitled AUTOMATIC POOL COVER SYSTEM USING BUOYANT-SLAT POOL COVERS, which is incorporated herein by reference in its entirety, and claims any and all benefits to which it is entitled therefrom. This Application is also related to U.S. Provisional Patent Application Ser. No. 60/440,667 filed Jan. 15, 2003 entitled APPARATUS AND METHOD FOR OPENING AND CLOSING A POOL COVER DRIVE CHAMBER, which is incorporated herein by reference in its entirety, and claims any and all benefits to which it is entitled therefrom. This Application is also related to U.S. Provisional Patent Application Ser. No. 60/517,246 filed Nov. 4, 2003 entitled CONCEALED HINGE CONSTRUCTION FOR MODULAR LIDS TO COVER SUBMERGED IN-FLOOR OR INWALL COVER RECESSES, which is incorporated herein by reference in its entirety, and claims any and all benefits to which it is entitled therefrom.
Number | Name | Date | Kind |
---|---|---|---|
1323424 | Towl et al. | Dec 1919 | A |
2885906 | Cupedo | May 1959 | A |
3613126 | Granderath | Oct 1971 | A |
4411031 | Stolar | Oct 1983 | A |
4416085 | Lybecker et al. | Nov 1983 | A |
4577352 | Gautheron | Mar 1986 | A |
4838403 | Layer | Jun 1989 | A |
RE33201 | Dickinson | Apr 1990 | E |
5184357 | Last | Feb 1993 | A |
5351440 | Vincent | Oct 1994 | A |
5546751 | Last | Aug 1996 | A |
6446276 | Mathis | Sep 2002 | B2 |
6536175 | Conterno | Mar 2003 | B2 |
6827120 | Last | Dec 2004 | B2 |
20010034905 | Mathis | Nov 2001 | A1 |
20020092853 | Wang | Jul 2002 | A1 |
20030084502 | Epple et al. | May 2003 | A1 |
Number | Date | Country |
---|---|---|
3032277 | Jul 1982 | DE |
19807576 | Oct 1998 | DE |
Number | Date | Country | |
---|---|---|---|
20040149397 A1 | Aug 2004 | US |
Number | Date | Country | |
---|---|---|---|
60440667 | Jan 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09829801 | Apr 2001 | US |
Child | 10758149 | US |