Not applicable.
The present application relates to light emitting diode (LED)-based light sources, and in particular to a modular retrofit LED lamp.
A light emitting diode (LED) lamp utilizes one or more LEDs as a source of illumination. LED lamps provide numerous benefits including, but not limited, increased efficiency and lifespan. The known LED lamps feature a printed circuit board (PCB), having one or more LEDs, which is permanently secured to a heat sink. As such, the PCB (and therefore LEDs) cannot be removed from the heat sink without damaging the connection leads of the PCB, and thereby rendering the entire LED lamp unsuited for its intended purpose. One reason that the PCB was permanently secured to the heat sink is that it was believed to be necessary in order to ensure sufficient heat transfer from the PCB to the heat sink. In other cases, LEDs are mounted permanently directly to a heat sink and leads from the LED soldered permanently to a PCB.
For example, U.S. Pat. No. 6,787,999 (Stimac et al.), assigned to GELcore, discloses an electronics module (14) releasably attached to a heat sink (22) and a LED module (20) attached to the heat sink (22) with electrical leads arranged in an electrical conduit (40) and a separate lens system (26) held by clips to a surface (24) of the heat sink (22). In such prior art devices, it is known to have the LED module permanently attached such as by soldering, such that once assembled it cannot be non-destructively removed from the heat sink (22).
U.S. Pat. No. 7,959,332 (Tickner et al.), assigned to Cooper Technologies Company, discloses an integrated LED and optic (with heat sink) that make module connection via a jack to an in-ceiling canister (which conventionally are also known to contain heat-sink features of their own).
U.S. Pat. No. 4,840,222 (Lakin et al.), assigned to Fasco Industries, Inc., discloses a heat sink and mounting arrangement. With reference to
U.S. Patent Publication 2009/0268447 (Zhang), assigned to PCE Industry, Inc., discloses a LED lamp having screws connecting the LED module 40 to the heat sink 30 (see, for example,
Other types of lamps include HID lamps as described in U.S. Pat. No. 7,819,562 to Freeman, et al. and U.S. Patent Publication No. 2009/0279308 to Veiga, et al., both of which are assigned to Osram Sylvania Inc, assignee of the instant disclosure.
Reference should be made to the following detailed description which should be read in conjunction with the following figures, wherein like numerals represent like parts:
For a thorough understanding of the present disclosure, reference should be made to the following detailed description, including the appended claims, in connection with the above-described drawings. Although the present disclosure is described in connection with exemplary embodiments, the disclosure is not intended to be limited to the specific forms set forth herein. It is understood that various omissions and substitutions of equivalents are contemplated as circumstances may suggest or render expedient. Also, it should be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting.
Turning now to the figures,
As will be apparent from the following description, a LED lamp 10 consistent with one or more embodiments of the present disclosure may provide numerous advantages. For example, the modular nature of the LED lamp 10 allows any one of the components (e.g., heat sink 12, light module 14, electronics module 16, and/or electrical interconnector 18) to be easily replaced by a user to either repair or modify the LED lamp 10 to perform a different function. Another advantage of the LED lamp 10 is that the LED lamp 10 may be easily recycled. For example, the heat sink 12 includes approximately 400 grams of aluminum. Because the heat sink 12 may be easily removed from the remaining components, the heat sink 12 may be easily recycled. The module nature of the LED lamp 10 may also increase the design flexibility of the LED lamp 10. In particular, since the light module 14 and electronics module 16 may be independently decoupled from the heat sink 12, the LED lamp 10 consistent with the present disclosure may be used with numerous combinations of light modules 14 and/or electronic modules 16. For example, the LED lamp 10 may be used with isolated drivers or non-isolated drivers. Additionally, the LED lamp 10 may be easily repaired in the event that either the light module 14 and/or electronic module 16 fails and/or needs replacement. The electrical interconnector 18 may also be removed from the LED lamp 10, thereby providing further design flexibility. The electrical interconnector 18 may provide a common interface for the light module 14 and electronic module 16, thereby increasing the compatibility various light modules 14 (for example, light modules 14 having different types of LEDs with different mounting interfaces (e.g., but not limited to, ceramic based LED and metal base LED with various types of printed circuit boards (PCBs) (such as, but not limited to, FR-4 boards and metal core PCBs, which have different soldering interfaces).
Turning now to
The heat sink 12 includes, for example, a plurality of heat-radiating fins 22 configured to increase the surface area of the heat sink 12 and dissipate more heat from the light module 14 and/or electronics module 16 to the surrounding air. The heat-radiating fins 22 are disposed generally longitudinally, and include, but are not limited to, straight fins and/or flared fins. It should be appreciated, however, that this is only one example and that the heat sink 12 may include other types of heat radiating/dissipating structures.
The heat sink 12 includes a first and a second region 24, 26. The first region 24 is configured to receive at least a portion of the electronics module 16. According to one embodiment, the first region 24 may form a generally cylindrical cavity having dimensions closely matching a portion of the electronics module 16 (e.g., to increase heat transfer from the electronics module 16 into the heat sink 12). The first region 24 may include a locking feature configured to cooperate with the electronics module 16 to couple, mount, or otherwise secure the electronics module 16 to the heat sink 12. The locking feature may include, but is not limited to, a groove or slot 28 configured to engage with a corresponding locking feature on the electronics module 16 (e.g., a tab or protrusion 72 as illustrated in
The second region 26 of the heat sink 12 is configured to receive at least a portion of the light module 14. According to one embodiment, the second region 26 may form a cavity having dimensions closely matching a portion of the light module 14 (e.g., to increase heat transfer from the light module 14 into the heat sink 12). While the second region 26 is illustrated defining a generally cylindrical cavity, the second region 26 may define non-cylindrical cavities.
The second region 26 may include a base 30. According to one embodiment, the first and second regions 24, 26 may be disposed at generally opposite ends of the heat sink 12 and may be separated by the base 30 of the second region 26. The second region 26 may be configured to receive the light module 14 such that a portion of the light module 14 engages the base 30 to facilitate heat transfer from the light module 14 into the base 30 of the heat sink 12. For example, the light module 14 may be in direct contact with the base 30, however, a thermal interface material (not shown for clarity) may be provided between the light module 14 and the base 30. The thermal interface material ensures that the light module 14 remains in thermal contact with the second region 26 of the heat sink 12 with reasonable shock and vibration by minimizing any potential air gaps between the light module 14 and the second region 26 of the heat sink 12.
The second region 26 may include a locking feature configured to cooperate with the light module 14 to couple, mount, or otherwise secure the light module 14 to the heat sink 12. The locking feature may include, but is not limited to, the optical cover 20 (see
The heat sink 12 also includes a passageway 32 extending between the first and second regions 24, 26. According to one embodiment, the passageway 32 may be formed on an interior of the heat sink 12, for example, the passageway 32 extends through the base 30. As described herein, the passageway 32 is configured to at least partially receive a portion of the electrical interconnector 18 (as described herein). For the sake of clarity, upper portion 18a of the electrical interconnector 18 (which may extend through passageway 32) has been omitted from
Turning now to
The body 40 may include an upper portion 42 and a lower portion 44, which may be configured to be coupled, mounted, or otherwise secured together which may be removably attached and detached from the heat sink 12 (e.g., by a user) without damage to the light module 14. The body 40 may be made from an optically reflective plastic material to increase the optical performance of the light module 14. The body 40 may be made as a plastic part that is, subsequent to molding, metalized so as to be reflective or coated with reflective white paint on the upper planar surface adjacent to optical elements 36 and/or on surfaces adjacent to lateral flanks of optical elements 36. An example of a suitable plastic is a polycarbonate marketed by Bayer MaterialScience under the trade name Makrolon 6265. Optionally, the body 40 may include one or more mechanical interfaces 43 (e.g., best seen in
The lower portion 44 may be configured to be coupled, mounted, or otherwise secured to LEDs 34. For example, the LEDs 34 may be mounted to a printed circuit board (PCB) 46 (which may be disposed within an interior space 51 defined by the body 40). The PCB 46 may include, but is not limited to, a Flame Retardant Class 4 (FR-4) PCB or a metal core PCB. In the event that a metal core PCB is used, the metal core PCB may serve as the lower portion 44 (i.e., the lower portion 44 and the metal core PCB 46 may be one in the same). For example, the upper and lower portions 42, 44, when coupled together, may define an interior space or cavity configured to at least partially receive the LEDs 34 and/or the PCB 46.
The light module 14 includes one or more LEDs 34 which may be coupled to a printed circuit board (PCB) 46. For example, the LEDs 34 may be arranged in one or more arrays of LEDs 34 that may be simultaneously and/or independently controlled. The three LEDs 34 may include any semiconductor light source such as, but not limited to, conventional high-brightness semiconductor LEDs, organic light emitting diodes (OLEDs), bi-color LEDs, tri-color LEDs, polymer light-emitting diodes (PLED), electro-luminescent strips (EL), etc. The LEDs 34 may include, but are not limited to, packaged and non-packaged LEDs, chip-on-board LEDs, as well as surface mount LEDs. The LEDs 34 may also include LEDs with phosphor or the like for converting energy emitted from the LED to a different wavelength of light.
The PCB 46 may include controller circuitry 48. The controller circuitry 48 may be configured to receive one or more control signals, for example, from electronics module 16 as described herein. The control circuitry 48 may control various attributes of the light module 14, for example, the brightness (e.g., a dimmer circuitry) of the LEDs 34, color of the light emitted from the light module 14 (e.g., the light module 14 may include two or more LEDs 34 configured to emit light having different wavelengths, wherein the controller circuitry 48 may adjust the relative brightness of the different LEDs 34 in order to change the mixed color from the light module 14), adjust for changes in ambient lighting conditions (e.g., an ambient light sensor), adjust for temperature changes, adjust for changes in output due to lifetime changes, and the like.
As discussed above, the light module 14 also includes electrical connector 38. The electrical connector 38 is electrically coupled to the LEDs 34, for example, by the PCB 46, and maybe configured to transfer power and/or control signals from the electronics module 16 to the PCB 46 and/or LEDs 34. The electrical connector 38 may include any type of reusable electrical connector such as, but not limited to, battery connectors, resilient metallic tabs, spring loaded connectors/terminals, pins, sockets, locking connectors, terminal blocks, posts, blade connectors, ring and spade connectors, Universal Serial Bus (USB) connectors, and the like. The electrical connector 38 may be at least partially exposed from the body 40, for example, through aperture or opening 50 (which may be located in the upper and/or lower portions 42, 44) disposed along the peripheral region of the body 40 such that the electrical connector 38 may selectively attachably and detachably form an electrical connection to portions of the electrical interconnector 18 as described herein. The number and arrangement of the connectors in the electrical connector 38 may depend on the number of LEDs 34 and/or necessary control signals for the desired functionality (e.g., dimming, color selecting, etc.).
The optical elements 36 may include an off-the shelf lens or a specially designed lens. The optical element 36 may be integrally molded with the upper portion 42 of the body 40, or may be separately formed and coupled, mounted, or otherwise secured to the body 40. The optical element 36, such as a T.I.R. (total internal reflectance) lens, may be configured to be in a fixed position with respect to the body 40 or may be moveable such that light emitted from a LED 34 may be directed/aimed by a user.
Optionally, the light module 14 may include a thermal interface material 52 configured to be arranged between the lower portion 44 and the base 30 of the second region 26 of the heat sink 12. The thermal interface material 52 may ensure that the light module 14 remains in thermal contact with the second region 26 of the heat sink 12 with reasonable shock and vibration by minimizing any potential air gaps between the light module 14 and the second region 26 of the heat sink 12.
Turning now to
The electronics module 16 includes a housing 54 having a first end region 56, a second end region 58, and an interior space or cavity 60 (e.g., best illustrated in
The first end region 56 is configured to be electrically and/or mechanically coupled to an external power supply (e.g., an electrical socket coupled to an AC or DC power source, not shown). While the first end region 56 is illustrated having a threaded socket 68, it should be appreciated that the first end region 56 may have any electrical connector configured to make a removable electrical connection with a source of electrical power, such as a conventional Edison screw base or a GU-24 pin base.
At least a portion of the second end region 58 is configured to be coupled, mounted, or otherwise secured to the first region 24 of the heat sink 12. For example, the housing 54 may include one or more coupling structures 70 configured to selectively attachably and detachably retain the electronics module 16 to the heat sink 12. According to one embodiment, the coupling structure 70 may include a latch. For example, the latch may include blind latch. According to another embodiment, the coupling structure 70 may include a snap-fit structure. The coupling structure 70 may be spaced from the first electrical connector 64.
The housing 54 of the electronics module 16 and/or the first region 24 of the heat sink 12 may include a guideway structure configured to align the electronics module 16 within the first region 24 such that the first electrical connector 64 is aligned with the first and second electrical contacts 66 of the electrical interconnector 18 to effect an electrical connection between therebetween (for example, as generally illustrated in
Turning now to
As discussed herein, the electrical interconnector 18 may include an upper portion 18a and a lower portion 18b (see, for example,
The electrical contacts 66 may be at least partially exposed from a body 74. The body 74 electrically insulates the electrical interconnector 18 from any metal components (such as, but not limited to, the heat sink 12) and/or may facilitate alignment of the electrical interconnector 18 with the passageway 32 such that the electrical connector 38, 64 of the light module 14 and electronics module 16 (respectively) may selectively attachably and detachably form an electrical connection to the electrical contacts 66 of the electrical light module 18 as described herein. The number and arrangement of the connectors in the electrical connectors 38, 64, 66 may depend on the number of LEDs 34 and/or necessary control signals for the desired functionality (e.g., dimming, color selecting, etc.). According to one embodiment, the electrical contacts 66 may be spaced radially from a central longitudinal axis L (see, for example,
According to another embodiment, the electrical interconnector 18 can be eliminated and the light module 14 may be selectively electrically attached and detached (i.e., removably coupled) to the electronics module 16 directly through the passageway 32.
Accordingly, the present disclosure a LED lamp includes a heat sink, an electrical interconnector, an electronics module, and a light module. The heat sink defines a first region adapted to receive in operative electrical and mechanical association an electronics module and a second region adapted to receive in operative electrical and mechanical association a light module. The heat sink further defining a passageway extending between the first region and the second region. The electrical interconnector is disposed in the passageway and has at least first and second electrical contacts extending between the first region and the second region, the first and second contacts being exposed within each of the first and second regions and adapted for making selectively attachable and detachable electrical connection in both the first and second regions. The electronics module adapted to be, as a unit, received in and selectively replaceably detached from the first region, the electrical module including a socket adapted to make electrical connection to an external power source, control circuitry adapted to receive power from the power source and provide power to light emitting diodes (LEDs), a coupling structure adapted to selectively attachably and detachably retain the electronics module to the heat sink, and a first electrical connector adapted to selectively attachably and detachably form an electrical connection to portions of the first and second contacts in the first region. The light module is adapted to be, as a unit, received in and selectively replaceably detached from the second region. The light module includes at least one light emitting diode (LED), an optical element in register with the LED adapted to shape light emitted therefrom, and a second electrical connector in operative association with the at least one LED and adapted to selectively attachably and detachably form an electrical connection to portions of the first and second contacts in the second region. The electronics module when retained in the first region supplies power to the light module when retained in the second region.
As used in any embodiment herein, “circuitry” may comprise, for example, singly or in any combination, hardwired circuitry, programmable circuitry, state machine circuitry, and/or firmware that stores instructions executed by programmable circuitry. In at least one embodiment, the light module and/or electronics module may include a controller, photodetector, PWM circuitry and/or driver circuitry (not shown) that may collectively or individually comprise one or more integrated circuits. An “integrated circuit” may be a digital, analog or mixed-signal semiconductor device and/or microelectronic device, such as, for example, but not limited to, a semiconductor integrated circuit chip.
As used herein, the designation (1)-(n) in connection with reference numerals should be interpreted as a repetition of like components (which may be identical, similar, or different). The terms “first,” “second,” and the like herein do not denote any order, quantity, or importance, but rather are used to distinguish one element from another, and the terms “a” and “an” herein do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced item.
The term “coupled” as used herein refers to any connection, coupling, link or the like by which signals carried by one system element are imparted to the “coupled” element. Such “coupled” devices, or signals and devices, are not necessarily directly connected to one another and may be separated by intermediate components or devices that may manipulate or modify such signals.
Reference in the specification to “one embodiment” or “an embodiment” of the present disclosure means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment of the present disclosure. Thus, the appearances of the phrase “in one embodiment” appearing in various places throughout the specification are not necessarily all referring to the same embodiment.
While the principles of the present disclosure have been described herein, it is to be understood by those skilled in the art that this description is made only by way of example and not as a limitation as to the scope of the invention. The features and aspects described with reference to particular embodiments disclosed herein are susceptible to combination and/or application with various other embodiments described herein. Such combinations and/or applications of such described features and aspects to such other embodiments are contemplated herein. Other embodiments are contemplated within the scope of the present invention in addition to the exemplary embodiments shown and described herein. Modifications and substitutions by one of ordinary skill in the art are considered to be within the scope of the present invention, which is not to be limited except by the following claims.
The following is a non-limiting list of reference numeral used in the specification: