The present invention relates to modular light fixtures that, by virtue of their construction and because they are constructed of component parts that may be readily and quickly assembled and/or dis-assembled, provide the advantages of safety, accessibility to the electronic and electrical parts of the controller, thermal management, and the ability to be upgraded with components for monitoring and controlling the fixture. Although not limited to this application, the modular light fixtures of the present invention are particularly suited for use with fluorescent fixtures, particularly fluorescents of the type used for so-called high bay lighting.
The need for energy efficiency has driven innovation in the development of lamps for light fixtures and control systems for lighting fixtures. Fluorescent fixtures have been retrofit to many buildings in place of metal halide fixtures to reduce energy consumption. Although fluorescents have been improved by development of so-called T5 or T5HO fluorescent lamps and “quick start” ballasts and ballasts with electronic controls, they have changed only incrementally over the many years that fluorescents have been in widespread use. The fixtures are generally constructed of a metal shroud with a metal bulkhead assembled to the underside of the shroud. Sockets and reflectors (in fixtures utilizing a reflector) are mounted to the bulkhead inside the shroud to direct light from the lamp(s) downwardly and to support and provide electrical connections to the lamp(s), and ballast(s) are mounted on the top side of the bulkhead (under the shroud and on the top surface of the bulkhead) for providing switching and start-up of the lamps in the fixture. In some fixtures, the bulkhead may be hinged to the shroud to facilitate access to the ballast(s) and in other fixtures, the reflector(s) are integral with the shroud.
Although a time-tested design, existing fluorescent fixtures are characterized by a number of disadvantages and limitations. If the ballast of certain types of fluorescent fixtures fails, for instance, the lamps and reflector(s) must be removed and the bulkhead, or socket bracket, dropped out of the shroud (or if the bulkhead is hinged to the shroud, the bulkhead is pivoted downwardly) to access the ballast(s). Removing and replacing the lamps and reflector(s) (in the type of fixture in which the reflectors are not integral with the shroud) is time-consuming and, depending upon the type of fixture, requires that wires inside the fixture be unplugged and re-plugged into appropriate connectors and/or cut and spliced, creating the possibility of improper wiring. Further, when the fixture is opened to access the ballasts and internal wiring, the person(s) servicing the fixture are in close proximity to the electrical parts of the fixture. Even though power to a fixture or circuit is turned off when the fixture is serviced, there is the possibility of an error that could result in contact with a live wire (and some such fixtures operate at 480V), creating a potentially dangerous situation, especially when the fixture is located twenty or more feet above the floor of the building as in the above-mentioned high bay buildings.
Another disadvantage of known fixtures is highlighted by the development of the above-mentioned T5/T5HO lamp. The T5 lamp is smaller than a T8 lamp, making it possible to mount, for instance, six T5 lamps in a fixture roughly the same size as a four lamp T8 fixture, thereby producing more light from a smaller fixture. However, mounting more lamps in a fixture can create temperature problems in the fixture. T5 lamps (like most fluorescent lamps) operate more efficiently at higher temperatures, but the component parts of the ballast, especially electronic ballasts, can be damaged by heat. Ballasts are available that operate at temperatures up to 90° C. (as compared to 60° and 65° C. ballasts that can fail at the temperatures to which they are exposed when used with T5 lamps), but temperature management is a problem, even in fixtures utilizing T8 lamps, in part because of the downward-facing, concave shape of the fixture, which effectively traps heat in the fixture. Ballast manufacturers may warrant their ballast for a certain operating life, but only as long as temperature does not exceed 90° C., and a heat sensitive label or tape is affixed to the outside of the ballast cover to provide a visual indication when/if temperature exceeds 90° C., in which case the ballast warranty is invalidated.
Fluorescent fixtures are also available in which the ballasts are mounted under the shroud and/or reflectors and that do not require removal of the lamps and reflector(s) for access to the ballasts. Such fixtures are common in commercial and office buildings, and some residential construction, with suspended ceilings and/or and in which headroom and/or the space between the top of the fixture and the underside of the roof or ceiling may be limited, and also in rooms such as kitchens that require energy efficient, bright area lighting. However, the ballasts of such fixtures are mounted within or under the shroud (or reflector) where the lamps are located such that the ballasts are exposed to the heat of the lamps. A fixture is known that is provided with what is characterized as a “removable ballast,” accessible from the bottom of the fixture, but no provisions are made in that fixture for thermal management, nor is that fixture designed in a way that would be adaptable for controlling the operating temperatures of the ballast or the lamps. The patent literature includes U.S. Pat. No. 6,268,701, which describes a fixture having the ballast mounted within the housing with a fan that is switched on to blow air over the ballast when the light is turned on. However, the fixture described in that patent is itself characterized by certain disadvantages and limitations that affect the utility of that invention. Specifically, as set out above, the lamps of a fluorescent fixture operate more efficiently at higher temperatures, but blowing the air through the fixture over the ballast as described in that patent cools not only the ballast but also the lamps. Note also that if ambient temperature is 30° C. for instance, the fan blows hot air over the ballast of the fixture disclosed in this patent, with the potential for compromising the efficiency and/or durability of the ballast.
Plug-in, so-called “emergency ballasts” are available (see, for instance, Cat. Nos. E-ACLEB0800D, -1400D, and -3000D of the E-conolight (Sturtevant, Wis.) catalog, www.e-conolight.com). However, so far as is known, such ballasts are intended for temporary, limited duty (the “single lamp field installable Plug-N-Go emergency ballast” described in the E-conolight catalog is capable of operating “one lamp for 90 minutes”), perhaps because such ballasts leave high voltage wiring exposed in violation of good safety practices. Further, such ballasts may require a dedicated fixture and/or can only be used with fixtures of a certain configuration (the emergency ballast offered in the E-conolight catalog requires that the “fixture must be purchased with ‘E’ option”). Nor can such ballasts be used, so far as is known, in fixtures controlled by remote control or photosensors, or that are part of a centrally-managed, lighting control system.
One fixture, available from The Light Edge, Inc. (Tualatin, Oreg., www.thelightedge.com) addresses this temperature management problem by attaching an enclosed ballast to the aluminum housing of the fixture. However, the fixture was very expensive and, despite this construction, limited by its upside-down, bowl shape (which traps, or contains, the heat produced by the lamps) and the need to remove the lamps and reflectors to access the ballasts. Ballasts have also been designed with cable connectors to simplify ballast replacement. However, these ballasts are of conventional design and the wiring harness must be enclosed, so the ballast is internal to the fixture or is provided with a secondary enclosure that adds cost and may adversely affect heat dissipation.
It is, therefore, an object of the present invention to provide a lighting fixture that overcomes these disadvantages and limitations that is of modular construction and that is adapted for use with different lamps, including without limitation fluorescents, metal halides, LEDs, and halogen lamps.
Another object of the present invention is to provide a light fixture having a ballast module that is adapted for quick and easy assembly to the light fixture on site and/or to an existing light fixture that is configured so that the ballast module can be releasably mounted to the fixture.
Another object of the present invention is to provide a lighting fixture in which the ballasts and other electronic components are insulated from the heat produced by the lamps and that does not require disassembly of the fixture in the event the ballasts need to be replaced and/or other maintenance needs to be performed on the fixture.
Another object of the present invention is to provide a lighting fixture that is easily and quickly assembled on-site and a ballast module that is easily and quickly assembled to the lighting fixture, or to an existing lighting fixture, on-site.
Another object of the present invention is to provide a lighting fixture that provides easy access to ballasts and other electronic components from above the fixture.
Yet another object of the present invention is to provide a lighting fixture that incorporates a thermal management system for optimizing the life and operating efficiency of the components of the fixture by mounting the electronic components in an enclosure, or compartment, that is separate and insulated from the lamps.
Another object of the present invention is to provide a light fixture incorporating passive and active temperature management for increasing the efficiency of the lamps as well as the service life of the electronic components of the fixture.
Another object of the present invention is to provide improved safety in that the structure of the fixture reduces the need for handling the electrically conductive components of the fixture, for instance, when a ballast must be changed.
Similarly, it is an object of the present invention to provide a lighting fixture in which the time required to change ballasts, or otherwise service the fixture, is reduced.
Similarly, it is an object of the present invention to provide a lighting fixture having a construction that is adapted for releasably mounting a ballast module thereto, the ballast module being easily and quickly detached from the fixture for ease of maintenance.
Another object of the present invention is to provide a lighting fixture optimized for use with the targeted system for switching electrical appliances described in International Application No. PCT/US2008/003845, TARGETED SWITCHING OF ELECTRICAL APPLIANCES AND METHOD, filed Mar. 24, 2008, and/or as part of a wireless or wired control network as described in co-pending application Ser. No. 12/284,394, POINT OF USE AND NETWORK CONTROL OF ELECTRICAL APPLIANCES AND METHOD, both commonly owned, and the disclosures of which are hereby incorporated into this application in their entireties by these specific references.
Yet another object of the present invention is to provide a lighting fixture having a construction that provides all necessary lighting functions in its basic form but that can also be upgraded, without structural changes, to include microprocessor control and/or active thermal management.
This listing of several of the objects of the present invention is intended to be illustrative, and is not intended to be a complete listing of all of the objects of the invention; instead, this listing of several objects of the present invention is intended to be illustrative in the sense that the invention addresses many needs and solves many problems, not all of which are listed here, and that are known in the art. Other objects, and the many advantages of the present invention, will be clear to those skilled in the art from the detailed description of the embodiment(s) of the invention and from the drawings appended hereto. Those skilled in the art will recognize, however, that the embodiment(s) of the present invention described herein are only examples of specific embodiment(s), set out for the purpose of describing the making and using of the present invention, and that the embodiment(s) shown and/or described herein are not the only embodiment(s) of a light fixture constructed in accordance with the teachings of the present invention.
The present invention addresses the above-described needs by providing a light fixture comprising a shroud having sockets mounted therein for supporting and making electrical connection to one or more lamps mounted in the sockets. First and second connectors are mounted to the shroud and electrically connected to the sockets mounted in the shroud and a ballast module is detachably mounted to the shroud on said connectors, the ballast module comprising the electrical circuitry for energizing and operating the lamps, the electrical connections to the electrical connections to the ballast module being made when the ballast module is mounted to the shroud.
Also provided is a modular light fixture comprised of a shroud and a ballast module, the ballast module comprising the electrical circuitry for energizing and operating the lamps of the fixture. The ballast module is mounted to the shroud and makes electrical connections to the lamps supported in the shroud on first and second connectors mounted to the shroud, the first and second connectors being spaced apart from each other by a specified distance whereby the ballast module is mounted to or removed from the shroud in convenient and quick fashion for ease of service.
In another aspect, the present invention provides a modular light fixture comprised of a shroud and a ballast module, the ballast module comprising the electrical circuitry for energizing and operating the lamps of the fixture. Modules are detachably mounted to the ballast module for actively cooling the electrical circuitry within the ballast module and/or for operating the electrical circuitry within the ballast module under control of an external network.
In yet another aspect, the present invention provides a modular light fixture of a construction that manages the heat produced by operation of the lamps in the fixture. Specifically, the heat sensitive electrical circuitry of a ballast module is insulated from the heat produced by operation of the lamps by mounting the ballast module to a shroud in which the lamps are mounted with an air gap between the ballast module and the shroud. In an alternative embodiment, the passive thermal management provided by mounting the ballast module to the shroud with an air gap therebetween is enhanced by active thermal management provided by a fan module mounted to the ballast module for drawing ambient air over the electrical circuitry in the ballast module.
Also provided is a method of managing the heat produced by operating a light fixture comprising the steps of containing the heat produced by the lamps of the fixture within a shroud and isolating the heat-sensitive electrical components for energizing the lamps in the fixture from the heat produced by the lamps of the fixture by mounting a module containing the heat-sensitive electrical components to the shroud with an air gap between the shroud and the module.
Referring now to the figures,
In more detail and with reference to the figures, a first embodiment of the modular light fixture of the present invention is indicated at reference numeral 10. Fixture 10 is comprised of shroud 12 and end plate 14, with socket brackets 16 mounted to the end plates 14 for receiving sockets 18 for supporting and making the electrical connection to a lamp 20 in the manner known in the art. The fixture 10 receives electrical power through conduit 22 comprised of three wires, all as known in the art, the ground 24 and neutral 26 wires being wired to the socket 18 and to a connector 28B described below and the third (supply) wire 30 being wired to connector 28A.
As shown in
Connectors 28A, 28B are shown schematically in
Those skilled in the art will recognize that the connectors 28A, 28B need not be formed in the shape of a right angle as shown in
As noted above, the modular fixture 10 of the present invention offers a number of advantages over the construction of prior light fixtures, and a primary advantage of the utilization of a mount 46, regardless of whether the mount 46 is comprised of stand-offs 48 and guides 50 as shown in
In certain operating environments, the above-described passive thermal management capabilities of the modular fixture 10 of the present invention may not be sufficient to maximize the operating efficiency and service life of lamps 20 and ballasts 34. When fixture 10 is utilized in such operating environments, it is quickly and conveniently upgraded to incorporate active thermal management capability by adding a fan module 58 as shown in
The fan module 58 for active thermal management described in the preceding paragraph is but one example of the ease with which the modular fixture 10 of the present invention may be upgraded. Referring again to
In describing the upgrading of the modular fixture of the present invention by inclusion of control module 64, the advantage of the right-angle connectors 28A, 28B shown in
From the above description of fan 58 and control 64 modules, it can be seen that the modular fixture 10 of the present invention is easily upgraded for use in a particular installation and/or operating environment, or retrofit for a particular installation and/or operating environment, in true “plug and play” fashion and without changing the structure of the fixture 10. It is further apparent that when the fixture does need service, it need not be dis-assembled to, for instance, access the ballasts, nor does it require re-wiring. Instead, the ballast module 36 (and/or one or both of a fan 58 or control 64 modules, if utilized in the particular installation) is quickly and easily detached from the fixture and replaced with a new module 36 and without exposing the electrician to high voltage.
Those skilled in the art who have the benefit of this disclosure will recognize that the light fixture of the present invention provides a level of adaptability and ease of assembly that allows the fixture to be utilized in many installations, the fixture being assembled on-site as needed for the particular installation and serviced on-site by detaching and replacing the controller without dis-assembling the fixture and/or disconnecting any wires quickly and with minimal exposure to electrical current. It will also be apparent that although the description set out herein is a description of a light fixture in which fluorescent lamps are mounted, the present invention also contemplates the mounting of other lamps in the fixture of the present invention. For instance, halogen lamps generate substantial heat such that the light fixture described herein is particularly well suited for use in a fixture utilizing halogen lamps because the lamps are separated and insulated from the electronic components by the compartmentalization of the electronics. The light fixture of the present invention is also adaptable for use with LED light sources and metal halide fixtures. All such changes, and others that will be clear to those skilled in the art from this description of the preferred embodiment(s) of the invention, are intended to fall within the scope of the following, non-limiting claims.
The present application is a continuation-in-part of co-pending International Application No. PCT/US2009/001734, MODULAR, ADAPTIVE CONTROLLER FOR LIGHT FIXTURES, filed Mar. 19, 2009, the disclosure of which is hereby incorporated into this application in its entirety by this specific reference.
Number | Name | Date | Kind |
---|---|---|---|
3569694 | Comer et al. | Mar 1971 | A |
4748545 | Schmitt | May 1988 | A |
5570947 | Felland | Nov 1996 | A |
5637964 | Hakkarainen et al. | Jun 1997 | A |
5737318 | Melnik | Apr 1998 | A |
6268701 | Tomme | Jul 2001 | B1 |
6331756 | Belliveau | Dec 2001 | B1 |
6388396 | Katyl et al. | May 2002 | B1 |
6828733 | Crenshaw | Dec 2004 | B1 |
7261436 | Haugaard et al. | Aug 2007 | B2 |
20070209566 | MacDonald et al. | Sep 2007 | A1 |
Number | Date | Country |
---|---|---|
0734196 | Sep 1996 | EP |
0734197 | Sep 1996 | EP |
2379497 | Mar 2003 | GB |
Number | Date | Country | |
---|---|---|---|
20100238673 A1 | Sep 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2009/001734 | Mar 2009 | US |
Child | 12387623 | US |