The present invention is directed towards a modular luminaire system and in particular to a modular lighting system which has a luminaire unit, the luminaire unit electrically connected to a remote ballast housing by a removable and pluggable cord, the luminaire unit electrically connected to the ballast housing through this flexible cord and plug system.
Luminaire systems of the prior art which require ballast electronics have typically had the ballast electronics integrated with the luminaire unit itself. With such a system, the ballast is hardwired to the luminaire directly thereby mandating that all ballast electronics be incorporated within the luminaire unit. Alternatively, the luminaire ballast electronics were typically combined into a single unit for placement or mounting along a ceiling or wall surface for later use. Commonly in such situations where ballast electronics are required, high intensity discharge lamps, metal-halide lamps and ceramic metal-halide lamps, to name a few, require ballast electronics for the requisite starting voltage as well as for continued electrical power. These prior art systems, however, have a significant drawback in that the luminaire unit must be combined with the ballast electronics thereby limiting the nature and aesthetic value of the prior art luminaires.
In these prior art systems, it was common to require the electronics for the ballast to be integrated within the electrical connections of the luminaire itself, therefore increasing the size of the luminaire as well as increasing the heat produced within the luminaire unit. In alternative constructions where the luminaires were combined with the ballast or ballast electronics, additional manufacturing steps were thus required and again, the aesthetic appearance of the luminaire was minimized due to the necessary size, which may be considerable, of the ballast electronics.
It is therefore desirable to have modular system wherein high intensity discharge lamps and the like, may be connected remotely to a ballast housing or ballast electronics thereby fully separating the luminaire unit and the ballast electronics in a fully modular system.
The present invention is directed towards a high intensity discharge modular lighting system which has a luminaire unit which is remotely and removably electrically connected to a remote ballast housing, the remote ballast housing being separate from the luminaire unit. The modular lighting system of the present invention utilizes a luminaire unit which has a cord and plug being insulated, the plug being received within a receptacle on the ballast housing. The ballast housing may be kept separate and remote from the luminaire unit thereby allowing the ballast electronics to be separated from the luminaire.
One of the benefits of the present invention is that the luminaire system may be a number of different illumination sources, such as high intensity discharge lamps, metal-halide or ceramic metal-halide while also allowing significantly different configurations to the luminaire and ballast combination. Thus, the luminaire unit may be designed such that it is not dependent upon the electronics of the ballast within the luminaire housing or directly affixed thereto.
Therefore, one object of the present invention is to provide a modular lighting system wherein the lighting system is comprised of a luminaire unit being electrically, but remotely connected by a cord and plug system to a remote ballast housing, the remote ballast housing providing the necessary starting pulse and power for various illumination lamps.
Another object of the present invention is to provide a modular lighting system wherein the luminaire is a high intensity discharge illumination luminaire connectable by a cord and plug system to a remotely positioned ballast unit, the remote ballast housing being one of a number of varying ballast electronics dependent upon the specific lamp or luminaire being utilized.
Another object of the present invention is utilization of a high intensity discharge modular illumination system having a separated remote ballast housing and a luminaire, the luminaire removably connected by a cord and plug system to the ballast, the ballast being configurable to and electrically connected with a track lighting system or alternative power source. The remote ballast unit may be removably attached to a track lighting system thereby contacting the electrical contacts on the track while providing the necessary electrical systems to a high intensity discharge illumination source on the luminaire unit.
One benefit of the present invention is that the remote placement of the ballast housing from the luminaire unit reduces the heat generated by the luminaire unit and also allows the luminaire unit, while being a high intensity discharge illumination source, from necessarily incorporating all of the ballast electronics within the luminaire.
The modular lighting system of the present invention provides a removable mounting mechanism allowing the luminaire unit to be attached to an unpowered track on the remote ballast housing or to an alternative mounting position. The remote ballast housing of the present invention may be electrically connected to a power track lighting system or may be a canopy mount or other various mounting positions. Such modularity between the luminaire unit and the remote ballast housing allows a number of configurations for high intensity discharge illumination while alternate placements of the remote ballast housing may be utilized, the two elements of the illumination system of the present invention being separated but electrically releasably connected by a removable cord and plug system allowing the luminaire to be plugged into the ballast housing.
The modular system of the present invention allows both the remote ballast housing and the luminaire unit to be removably attached or mounted in multiple positions while also making the luminaire unit aesthetically pleasing by removal of the ballast electronics from the luminaire.
These and other benefits of the present invention will be directly apparent after review of the drawings attached herewith along with the description and claim set forth herein.
The modular lighting system of the present invention is shown in
The luminaire unit 20 depicted in
As can be seen from the embodiment depicted in
Returning to the luminaire unit 20 of the present invention and depicted in
As is apparent from the construction of the track attachment fitting 14, shown in
Alternatively, as is seen in
While it is shown that the luminaire unit 20 is affixed to a track unit, the modular luminaire system of the present invention is designed for a number of removable attachment mechanisms for each luminaire unit 20 and the examples shown herein are not to be considered to be limiting as they are exemplary only.
Returning to the example luminaire units shown in the figures, the luminaire unit 20 have incorporated an attachment arm 15 which extends upward to a track attachment fitting 14. The track attachment fitting 14 is a standard track attachment unit as is shown much more closely in
Returning to the examples shown in the Figures, the luminaire unit 20 additionally has the lens 25, lamp 27 and luminaire face 16, all of which may be modified according to user preference and design necessities. A significant number of variations are allowable for design of the particularized luminaire unit 20 used. The particular constructions shown are exemplary only.
The luminaire unit 20 also has shown extending outward from the socket cup 18 a cord and plug assembly which is comprised of the cord 22 and attachment plug 24. Interior of the cord 22 are conductors which are three each individually wrapped in adequate insulation, the entirety of the three insulated conductors then enclosed in additional silicone insulation material. As is known, the conductors include one ground and two live conductors for completion of the appropriate circuit. Each of the conductors terminate at the insulated conductors ends 24b. As can be seen, the conductive ends 24b extend outward from the plug 24 and are utilized to electrically connect the luminaire unit 20 with pins in plug receptacle 32 and the electronics within the remote ballast housing 30.
The three conductor system utilized allows for the luminaire unit 20 to be removably and electrically connected to the remote ballast housing 30, regardless of the location of the remote ballast housing 30 or the mounting of the luminaire unit 20. However, due to the necessary starting pulse for activation of the high intensity discharge lamps, the cord 22 and plug 24 must necessarily be properly insulated to withstand and adequately insulate up to a 5 KV starting pulse or more. This starting pulse may be as low as 4 KV dependent upon the particular electronics or lamps utilized. However, the cord and plug as well as the insulated conductors 24b are adequately insulated to prevent electrical shock and meeting all necessary standards for insulation. Also of note is that the plug 24 may incorporate a locking lever 24a to maintain the plug in position within the plug receptacle 32 of the remote ballast housing 30. The locking tab merely positions into a slot adjacent to the plug receptacle 32 and prevents the plug from being removed from the remote ballast 30 without depression of the locking tab 24a. Thus, the design of the modular illumination system of the present invention allows for the electrical connection of the luminaire unit 20 through the use of the cord and plug system described independent of the actual luminaire unit and the remote ballast housing. Further, because of the design, the luminaire unit 20 may be significantly separated from the remote ballast housing 30 wherein an insulated extension cord, such as is shown in
The remote ballast housing utilized in the present invention may be one of a number of designs and may incorporate either an electronic ballast or a magnetic ballast. The remote ballast housing depicted in the drawing is electrically connected to the luminaire unit 20 and may itself be electrically connected to a live track assembly 50, such as is shown in
The remote ballast housing 30 shown in the Figures incorporate various connection mechanisms such as the track attachment fittings 35, shown in
As is readily apparent, the ability of modularizing the luminaire units and the ballast electronics as is done in the present invention is through the use of a plug and cord assembly allows for significant variations in design and use of high intensity lamp illumination. Of the examples shown in
As is shown in
Alternatively, as is shown in
As is readily apparent, a number of variations due to modularity of the modular HID luminaire unit system of the present invention allows for a number of various mechanical attachments between the luminaire unit and the remote ballast housing. The luminaire unit may be directly attached to the remote ballast housing through the use of a remote ballast housing track mounting system or may be mounted separate therefrom. Also, as is readily apparent, the luminaire unit 20 is readily and easily removably attached to any position and is also removably electrically connected to the remote ballast housing. Thus, the luminaire unit 20 may be matched to an appropriate remote ballast housing depending upon the electrical needs of the illumination system and the particularized ballast utilized.
This application claims benefit under 35 USC 119(e) of U.S. Provisional Application No. 60/568,831, filed May 7, 2004, the entire disclosure of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60568831 | May 2004 | US |