Generally, the present disclosure relates to a modular system and manifold banks with flushing, pump isolation and access functionalities in the active fracing stage introducing fluids into a well.
Oil and gas wells are formed by drilling a hole into a geological formation where hydrocarbons (oil and/or gas) are located. In some cases, hydrocarbon production from an existing well may decrease over time and various actions may be utilized to increase the production from the well. For example, a hydraulic fracturing process (also known as a “fracing” operation) may be performed on wells to increase hydrocarbon production. In other cases, fracturing operations may be performed on new wells. For example, fracturing operations may be performed on brand new wells extending very deep (e.g., 10,000-20,000 feet) into the earth since, at such depths, the formation may not exhibit sufficient permeability and porosity to allow oil and gas to flow naturally from the formation into the well at rates sufficient to economically justify drilling the well.
In general, hydraulic fracturing operations involve pumping a fracturing fluid (frac fluid) under high pressure into the formation for purposes of creating cracks in the formation to thereby create fluid flow paths from the well to a larger area of the reservoir that contains the hydrocarbons to be produced. More specifically, a hydraulic fracture is formed by pumping a fracturing fluid into the well at a rate sufficient to increase the pressure downhole to a value that is greater than the fracture gradient of the formation. The pressure of the fracturing fluid causes the formation to crack, thereby allowing the fracturing fluid to enter and extend the crack further into the formation. The fracturing fluid can comprise any type of fluid, ranging from water to gels, foams, nitrogen, carbon dioxide, or air in some cases along with different forms of diluted acid. To keep the fractures in the formation open after the fracture is initially formed, so-called propping agents or “proppants” (typically small spheres generally composed of quartz sand grains, ceramic spheres or aluminum oxide pellets) are introduced into the fracturing fluid and pumped into the fractures to extend the fractures and pack them with proppants. At a very basic level, the proppants act to keep the fracture “propped” open when the pressure on the fracturing fluid is eliminated or reduced. Typically, the proppant is made of a material that is higher in permeability than the surrounding formation. Accordingly, the propped hydraulic fracture becomes a high permeability conduit through which the formation fluids can flow into the well.
In general, to create sufficiently high pressure to create cracks in the formations at great depths requires a plurality of fracing pumps (frac pumps). A multitude of hoses and piping are attached upstream and downstream of these pumps and direct the flow of the fracturing fluid to the wellbore. The management of these pumps and associated hoses, pipes, pipelines, and other equipment creates challenges for an operator. For example, it is often necessary to interrupt fracing stage operations to investigate a malfunction or to perform necessary repairs on pumps. This leads to nonproduction time that wastes money and leads to budget overruns in the fracturing operations.
A pump that requires repairs or maintenance during the fracing stage cannot be isolated from the fracing system and brought back online into an active fracing stage. This is because the high pressure in the fracing system cannot be bled off, and the pump cannot be reprimed and pressure tested, independently of the frac spread. After the fracing stage is complete, the entire system is de-energized to allow access to the pumps. Once the high pressure in the system has been bled off, the operator may access the pumps and perform pump maintenance such as repairing or replacing valves, seats, packing, pumps and high pressure/low pressure lines. After completing repairs, the operator will typically perform a pump prime-up sequence and pressure tests of the system before the fracing stage can recommence. Another major issue is caused by the proppant/sand that is used in fracing operations. The proppant/sand can accumulate in the pumps, lines and valves, especially if the pump is shut down during the fracing stage because the pumps cannot be flushed with water during the active fracing stage, and such buildup may cause issues on re-start.
The nonproduction time required in current operations is especially problematic because the fracing industry demands as much pump up-time as possible. For example, even increasing from eighteen to nineteen hours per day in pumping time is a major benefit because of the added productivity time. Further, operators are constantly instructed to find methods and alternatives to increase productive pump up-time.
The following presents a simplified summary of the subject matter disclosed herein in order to provide a basic understanding of some aspects of the information set forth herein. This summary is not an exhaustive overview of the disclosed subject matter. It is not intended to identify key or critical elements of the disclosed subject matter or to delineate the scope of various embodiments disclosed herein. Its sole purpose is to present some concepts in a simplified form as a prelude to the more detailed description that is discussed later.
Generally, the present disclosure is directed toward solutions that increase productivity by increasing pump time, and are of great benefit to the industry. More specifically, embodiments herein are directed toward a new manifold system that increases productive pump up time by providing each modular pump manifold the functionality to be flushed, isolated, bled-off, reprimed, and pressure tested while the other modular pump manifolds are in the active fracing stage. These functionalities allow pump maintenance operations to occur simultaneously to the fracing stage and also allow an operator to replace or bring frac pumps back online into an active fracing stage at any time. The new manifold system also allows an operator to feed each modular pump manifold with water on demand to perform either flushing or prime up operations.
The present disclosure gives better parallel maintenance and repair functionalities during the introduction of fluids into a well, such as performing fracturing operations on oil and gas wells that may solve or at least reduce the effects of one or more of the problems identified above.
One illustrative modular manifold system disclosed herein includes, among other things, modular pump manifolds that includes one or more pumps, a low-pressure header that selectively distributes fracturing fluid and/or water to the modular pump manifolds and to low pressure inlets of the one or more pumps associated with a respective manifold, a high-pressure manifold that receives discharge from the one or more pumps of a respective manifold, and a main high-pressure manifold that receives discharge from high pressure manifolds and is fluidly connected to one or more wells
Another illustrative modular manifold system disclosed herein includes one or more modular pump manifolds, including among other things, a low-pressure manifold that supplies fracturing fluid or clean water to a suction side of frac pumps, a high-pressure manifold that receives discharge from frac pumps, and a bleed off/prime up manifold that bleeds off pressure from the high-pressure manifold and primes up pressure in the high-pressure manifold.
Also disclosed herein is a method that includes, among other things, supplying fracturing fluid to modular pump manifolds where each modular pump manifold is connected to pumps, increasing the fracturing fluid pressure using the pumps to supply a high pressure fracturing fluid to a main high-pressure manifold, discontinuing supply of the fracturing fluid to a first modular manifold of the modular manifolds while continuing to supply the fracturing fluid to other modular manifolds, and fluidly isolating the first manifold from the main high-pressure manifold.
Certain aspects of the presently disclosed subject matter will be described with reference to the accompanying drawings, which are representative and schematic in nature and are not be considered to be limiting in any respect as it relates to the scope of the subject matter disclosed herein:
While the subject matter disclosed herein is susceptible to various modifications and alternative forms, specific embodiments thereof have been shown by way of example in the drawings and are herein described in detail. It should be understood, however, that the description herein of specific embodiments is not intended to limit the disclosed subject matter to the particular forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the disclosed subject matter as defined by the appended claims.
Various illustrative embodiments of the disclosed subject matter are described below. In the interest of clarity, not all features of an actual implementation are described in this specification. It will of course be appreciated that in the development of any such actual embodiment, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming but would nevertheless be a routine undertaking for those of ordinary skill in the art having the benefit of this disclosure.
The present subject matter will now be described with reference to the attached figures. Various structures, systems and devices are schematically depicted in the drawings for purposes of explanation only and so as to not obscure the present disclosure with details that are well known to those skilled in the art. Nevertheless, the attached drawings are included to describe and explain illustrative examples of the present disclosure. The words and phrases used herein should be understood and interpreted to have a meaning consistent with the understanding of those words and phrases by those skilled in the relevant art. No special definition of a term or phrase, i.e., a definition that is different from the ordinary and customary meaning as understood by those skilled in the art, is intended to be implied by consistent usage of the term or phrase herein. To the extent that a term or phrase is intended to have a special meaning, i.e., a meaning other than that understood by skilled artisans, such a special definition will be expressly set forth in the specification in a definitional manner that directly and unequivocally provides the special definition for the term or phrase. With reference to the attached figures, various illustrative embodiments of the systems, devices and method disclosed herein will now be described in more detail.
The following is a brief high-level description of certain operational aspects of the illustrative system 100 depicted herein. During fracturing operations, the blender 112 is adapted to prepare or mix the fracturing fluid to be injected into the well 148. The blender 112 may receive a fluid, e.g., water from the water tanks 114, and various chemical additives and/or proppants/sand and mix all of these materials together. The final fracturing fluid is provided from the blender 112 to the low-pressure header 142. The fracturing fluid is then supplied to the low-pressure manifold 170 (see
Water from the water tanks 114 that is received by the blender 112 may be supplied to the low-pressure manifold 170 of a particular modular pump manifold 144 by a boost pump 107 through the dedicated low-pressure flow line 127 of the particular modular pump manifold 144 for clean water flushing operations (see
Also depicted are a plurality of illustrative mechanical support structures 147 that are positioned where needed to mechanically support the main high-pressure manifold 165. Also note that, in the depicted example, main high-pressure manifold 165 may in fact comprise a plurality of piping spools that are coupled to one another by a flanged connection 149. In other embodiments, the main high-pressure manifold 165 may be a single piping spool with flanged connections on either end for mating with corresponding flanged connections of adjacent modular pump manifolds 144.
As mentioned above, the low-pressure fracturing fluid is supplied from the low-pressure header 142 to the low-pressure manifold 170 on each of the modular pump manifolds 144 via a dedicated low-pressure flow line 127. As mentioned above, a low-pressure header 142 can also be used to supply clean water to the low-pressure manifold 170 in flushing operations. In some embodiments, the low-pressure header 142 may serve as a “crossover” manifold in that it has twelve inlet nozzles 142A (e.g., 4-inch nozzles) and four outlet nozzles (e.g., 6-inch nozzles). It should also be noted that the modular pump manifold 144 that is positioned closest to the low-pressure header 142 will typically have a series of valves, as indicated by the reference numeral 129, operatively coupled to one end of the high-pressure manifold 160 on that particular modular pump manifold 144. The valves 129 may serve a variety of purposes, e.g., a connection for priming the frac pumps 124, to provide a connection point back to the blender 112, etc. Of course, the valves 129 may be removed as needed to access the flow path defined by the plurality of modular pump manifolds 144 and the main high-pressure manifold 165. Each high-pressure manifold 160 is connected to the main high-pressure manifold 165 via an isolation valve 168 (see
A pump 107 may be used to supply clean water directly from the water tanks 114 to the low-pressure header 142 by a dedicated water flow line 108 that bypassed the blender 112. In an example embodiment, the pump 107 used supply the clean water is a boost pump. The low-pressure header 142 may further comprise a water header 117 with a water discharge valve 119 between the water header 117 and each dedicated low-pressure flow line 127. The pump 107 may supply clean water to the water header 117. In an example embodiment the water valve 119 may be a butterfly valve. The water header 117 and water discharge valve 119 may be downstream of the frac fluid header 113 and the frac fluid discharge valve 115. In this manner, a clean water flow may be supplied through a dedicated low-pressure flow line 127a to a particular modular pump manifold 144a by closing the associated frac fluid discharge valve 115 located upstream of the respective clean water low-pressure header 117a and opening the associated clean water valve 119. In this way, the low-pressure headers 113, 117 allows each low-pressure outlet to be selectable between the frac fluid from the blender 112 or a clean water from the water tanks 114. In an embodiment, the low-pressure outlet and low-pressure flow lines may be 6 inch lines, however it will be readily apparent to those skilled in the art that other sizes may be used.
As an example, an operator may want to flush the frac pumps 124 connected to particular modular pump manifold 144a that are active in the fracing stage, having frac fluid slurry flowing from the header 117 to the frac pumps 124 of the modular pump manifold 144a. The operator will close the discharge butterfly valve 115a associated with the slurry feed to modular pump manifold 144a to stop the flow of the frac fluid from the frac fluid low-pressure header 113. The operator will open the clean water butterfly valve 119a to start the flow of clean water from the clean water low-pressure header 117. The clean water will flow to the low-pressure manifold 170a of a particular modular pump manifold 144a through the dedicated low-pressure flow line 127a. Next, the clean water is received by the specific frac pumps 124 that are connected via low-pressure flow lines 125 to the low-pressure manifold 170a of particular modular pump manifold 144a. The water is pressurized and flushed through the frac pumps 124 to the high-pressure manifold 160a on the particular modular pump manifold 144a via various high-pressure flow lines 126a. The pressurized water exits the high-pressure manifold 160a via an open isolation valve 168a (see
The other modular pump manifolds 144b and associated pumps in the system 140 may continue in the active fracing stage while a particular set of frac pumps 124a in a particular modular pump manifold 144a are flushed. As an example, modular pump manifold 144b is in the fracing stage while modular pump manifold 144a is being flushed. The discharge butterfly valve 115b that allows the flow of the frac fluid from the frac fluid low-pressure header 113 is open and the clean water butterfly valve 119 is closed. The frac fluid will flow to the low-pressure manifold 170b of a modular pump manifold 144b through the dedicated low-pressure flow line 127b. The frac fluid is received by the frac pumps 124b that are connected via low-pressure flow lines to the low-pressure manifold 170b of the modular pump manifold 144b. The frac fluid is pressurized and flushed through the frac pumps 124b to the high-pressure manifold 160b on the modular pump manifold 144b via various high-pressure flow lines 126b. The pressurized frac fluid exits the high-pressure manifold 160b via an isolation valve 168b that is actuated so as to be open, and into the well (not shown) via the main high-pressure manifold 165.
The flushing functionality allows any modular pump manifold 144 to be flushed during the active fracing stage with clean water. Isolation valve 168 (a/b) also allow for the pressure to be bled off the system for pump maintenance. The clean water removes proppant/sand and debris from the pump lines prior to shutting down frac pumps 124 of a modular pump manifold 144 or as part of a maintenance schedule to clean the frac pumps 124 and the modular pump manifold 144. Once a modular pump manifold 144 is flushed, an operator may actuate to close the high-pressure mainline isolation valve 168 to isolate the modular pump manifold 144 from the rest of the frac spread. The associated valve 119 may also be closed, thereby fully isolating the modular pump manifold 144 from fluid flow (low pressure slurry or clean water via lines 127 as well as high-pressure fluid from main high-pressure manifold 165. Pressure may then be bled off the system and maintenance, replacement or other necessary actions may be performed on the pumps 124, associated motors, valves, etc. In an embodiment, the boost pump 107 supplying water during flushing may be shut down or a valve at either the low-pressure manifold 170 or the water header 119 may be closed before the bleed off. Embodiments of the present disclosure may uniquely allow for “in place” maintenance to be performed. Fully pressurized frac equipment poses a risk to nearby personnel. To avoid that risk, personnel stay out of a “red zone” area typically defined as a fixed number of feet adjacent to pressurized equipment. By isolating an entire modular pump manifold, and all of the pumps connected to it, the “red zone” area is significantly reduced, such that personnel can reach the pump trucks and other equipment to perform maintenance operations without having to disconnect the equipment and move it elsewhere. In contrast, isolating a single pump truck may only reduce the “red zone” enough to allow the pump truck to be disconnected and moved. Even though “in place” maintenance is possible using embodiments present in the disclosure, it is also possible that a pump truck may be disconnected from an isolated modular pump manifold 144 and a new pump truck connected. Other routine maintenance may also be performed when isolated. As the ability to isolate the modular pump manifolds 144 allows for maintenance while the remaining manifolds are in operation, fracing may continue during the maintenance, and up-time is increased; further, a routine maintenance of pumps may allow a greater overall up-time as compared to systems which operate pumps to failure before maintenance or replacement.
Each high-pressure manifold 160 is connected to the main high-pressure manifold 165 of the modular manifold system 140 via an isolation valve 168 that allows fluid communication between adjacent modular pump manifolds 144 and the main high-pressure manifold 165. In one illustrative embodiment, the isolation valve is a large bore isolation valve 168 that may be actuated so as to stop the flow of high-pressure fluid from the high-pressure manifold 160 to the main high-pressure manifold 165. When the large bore isolation valve 168 of a particular modular pump manifold 144 is actuated to stop the flow of high-pressure fluid from the high-pressure manifold 160 of that particular modular pump manifold 144 to the main high-pressure manifold 165, that particular modular pump manifold 144 is isolated from the rest of the modular manifold system 140. The other modular pump manifolds 144 of the modular manifold system 140 may simultaneously continue in the active fracing stage while the particular modular pump manifold 144 is isolated. The isolation of a particular modular pump manifold 144 allows operators to access the modular pump manifold 144 safely while the other modular pump manifolds 144 continue in the active fracing stage.
In an example embodiment, the isolation valve 168 may be a 7-inch gate valve however, the isolation valve 168 may be of different sizes. In another example embodiment, a 4-inch gate valve, a 4-inch hydraulic plug valve or a 4-inch check valve may be utilized. A 4-inch valve may be desirable because the flow rate capacity is less in a modular pump manifold 144 because fluid from =fewer frac pumps 124 is consolidated in the modular pump manifold 144. In an example embodiment, a modular pump manifold 144 may be consolidating fluid from only two to four pumps.
As an example, the high-pressure fluid in the high-pressure manifold 160, flow lines 126 and frac pumps 124 that is isolated from the main high-pressure manifold 165 by the isolation valve 168, may be bled-off via the bleed-off/prime-up manifold 190 that is connected to the discharge line 191. In general, the bleed-off/prime-up manifold 190 includes a manifold inlet 196, a high-pressure mainline transducer 203, plug valves 193, 194, a downstream pressure transducer 205, a choke 195, and a bypass valve 201. In an embodiment, there is an inside plug valve 193 and an outside plug valve 194 located between the high-pressure manifold 160 and the discharge line 191. In an example embodiment, the plug valves 193, 194 may be hydraulic or air operated. In an example embodiment, the valves 193, 194 are 1×2 ULT plug valves.
The high-pressure fluid in the high-pressure manifold 160, flow lines 126 and frac pumps 124 associated with a particular modular pump manifold 144 will flow through the manifold inlet 196 of the high-pressure manifold 160 and into the mainline transducer 203 of the bleed-off/prime-up manifold 190 (arrows 192 in
In an example embodiment, the modular manifold system 140 incorporates a variable bore ram system to support flexible high-pressure lines that makes it easy to connect directly to the discharge connection of a fluid end. In addition, at the end of each flexible line is an external connection that allows the operator to either directly perform a seal test via a hand pump, or remotely perform a seal test via an automated seat test circuit. This example embodiment allows operators to quickly replace pumps out during the active fracing stage and reduce nonproductive down time between stages. Of course, those skilled in the art will appreciate that other similar systems and equipment may be used to achieve similar results.
After maintenance and replacing or repairing frac pumps 124, an operator can commence the prime-up operations on a particular modular pump manifold 144 independently of the modular manifold system 140 that may be in the active fracing stage. In an example embodiment, to slowly prime-up the pumps, clean water may be supplied by the clean water header 117 via a dedicated low-pressure flow line 127 to a particular modular pump manifold 144 as described above. In addition, the operator actuates to open the inside plug valve 193, the outside plug valve 195 and also the bypass valve 201 (arrows 197 in
As described above, embodiments herein include modular “manifolds” that may be fluidly isolated from other modular pump manifolds in the system, such that maintenance may be performed on equipment of a manifold while continuing operations using the remaining manifold. Each modular pump manifold may include a first modular pump manifold that may include a low-pressure manifold configured to supply a fracturing fluid or clean water to a suction side of two or more frac pumps and a high-pressure manifold configured to receive a discharge of the one or more frac pumps. The system may include a bleed off/prime up manifold configured to bleed off pressure from the high-pressure manifold and to prime up pressure in the high-pressure manifold. The system may further include one or more additional modular pump manifolds that each may include a low-pressure manifold configured to supply a fracturing fluid or clean water to a suction side of two or more frac pumps, a high-pressure manifold configured to receive a discharge of the two or more frac pump and a bleed off/prime up manifold configured to bleed off pressure from the high-pressure manifold and to prime up pressure in the high-pressure manifold, a main high-pressure manifold fluidly connected to and configured to receive the discharge from the high-pressure manifolds of the modular pump manifold and the one or more modular pump manifolds, a main low pressure-header configured to supply the fracturing fluid from a supply system to each of the low-pressure manifolds, a water header configured to supply water from a water supply system to each of the low-pressure manifolds where the main low-pressure header and the water header may be fluidly connected to a common flow line, and where each common flow line is fluidly connected to a respective one of the low-pressure manifolds.
Two or more modular pump manifolds may be used to supply a high pressure fluid to a downstream system, such as for supplying a fracturing fluid to one or more wells. The system for supplying a fracturing fluid to the one or more wells may include, for example, one or more pumps, a low-pressure header, two or more high-pressure manifolds, and a main high-pressure manifold. The low-pressure header may be configured to distribute a fracturing fluid and water, individually or collectively, to the two or more modular pump manifolds and therefrom to low pressure inlets of the one or more pumps associated with the respective manifold. The two or more high-pressure manifolds are each respectively configured to receive a discharge from each of the one or more pumps of a respective manifold. The main high-pressure manifold is configured to receive a discharge from each of the two or more high-pressure manifolds, and the main high-pressure manifold may be fluidly connected to one or more wells.
Each modular pump manifold may be fluidly isolatable from the other modular pump manifolds. In some embodiments, each modular pump manifold may include two or more pumps.
The low-pressure header of the system may include a frac fluid header configured to receive a slurry from a slurry supply system. Supply lines are provided, each fluidly connecting the frac fluid header to a respective one of the two or more modular pump manifolds. Further, a water header is configured to receive water from a water supply system, and water supply lines are provided, each fluidly connecting the water header with a respective one of the supply lines.
The low-pressure header of the system may further include valves disposed on each of the supply lines and each of the water supply lines, where the valves are configured to permit or restrict flow of slurry or water, respectively, from the frac fluid header and the water header to the associated modular pump manifolds.
In some embodiments, the system for supplying a fracturing fluid to the one or more wells may include a bleed-off/prime-up manifold, where each bleed-off/prime-up manifold may include an inlet fluidly connected to the high-pressure manifold, an outlet, a first flow line fluidly connecting the inlet and the outlet, and a second flow line fluidly connecting the inlet and the outlet. A valve is disposed on the first flow line and a choke is disposed on the second flow line.
The system for supplying a fracturing fluid to the one or more wells may include a blender configured to blend water and proppant to form the fracturing fluid. A flow line fluidly connecting the blender with the low-pressure header may be used for supplying the fracturing fluid from the blender to the low-pressure header. A water supply system configured to supply water to the blender may be used to supply water to the low-pressure header. The system may further include a pump, disposed downstream of the water supply system and upstream of the low-pressure header, configured to increase a pressure of the water supplied to the low-pressure header.
In an embodiment, each of the two or more modular pump manifolds that may be used to supply a high-pressure fluid may include a low-pressure manifold fluidly connected to the low-pressure header and flow lines fluidly connecting the low-pressure manifold to an inlet of a respective one of the one or more pumps to supply fracturing fluid and clean water from the low-pressure manifold to a suction side of each pump of the respective modular pump manifold.
The above described systems may be used in methods for fracturing one or more wells. The method for fracturing one or more wells may include, for example, supplying a fracturing fluid to two or more modular pump manifolds via a low-pressure header, increasing a pressure of the fracturing fluid using one or more pumps associated with each modular pump manifold to supply a high pressure fracturing fluid to a main high-pressure manifold, discontinuing supply of the fracturing fluid to a first manifold of the two or more modular pump manifolds, supplying water to the first manifold via the low-pressure header while continuing to supply the fracturing fluid to a remainder of the two or more modular pump manifolds via the low-pressure header, flushing fracturing fluid from the first manifold using the water and fluidly isolating the first manifold from the main high-pressure manifold. The method for fracturing one or more wells may include the flushing of fracturing fluid comprises discharging water from the first manifold into the main high-pressure. The method for fracturing one or more wells may include fluidly isolating the first manifold, bleeding off pressure in one or more fluid conduits of the first manifold, and performing one or more maintenance procedures on equipment of the first manifold. After completing one or more maintenance procedures described, the method may further include, supplying water to the first manifold, priming pumps of the first manifold, discontinuing supply of water to the first manifold, supplying a fracturing fluid to the first manifold, and feeding pressurized fracturing fluid from the first manifold to the main high-pressure manifold.
As will be appreciated by those skilled in the art after a complete reading of the present application, the use of the terms “high-pressure” and “low-pressure,” e.g., as in “high-pressure manifold” and “low-pressure manifold,” is intended to only be descriptive of the component and their position within the systems disclosed herein. That is, the use of such terms should not be understood to imply that there is a specific operating pressure or pressure rating for such components. For example, the term “high-pressure manifold” should be understood to refer to a manifold that receives pressurized fracturing fluid that has been discharged from a frac pump irrespective of the actual pressure of the fracturing fluid as it leaves the pump or enters the manifold. Similarly, the term “low-pressure manifold” should be understood to refer to a manifold that receives fracturing fluid and supplies that fluid to the suction side of the frac pump irrespective of the actual pressure of the fluid within the low-pressure manifold.
The particular embodiments disclosed above are illustrative only, as the disclosed subject matter may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. For example, the process steps set forth above may be performed in a different order. Furthermore, no limitations are intended to the details of construction or design herein shown, other than as described in the claims below. It is therefore evident that the particular embodiments disclosed above may be altered or modified and all such variations are considered within the scope and spirit of the claimed subject matter. Note that the use of terms, such as “first,” “second,” “third” or “fourth” to describe various processes or structures in this specification and in the attached claims is only used as a shorthand reference to such steps/structures and does not necessarily imply that such steps/structures are performed/formed in that ordered sequence. Of course, depending upon the exact claim language, an ordered sequence of such processes may or may not be required. Accordingly, the protection sought herein is as set forth in the claims below.
Number | Name | Date | Kind |
---|---|---|---|
11162320 | Christopherson | Nov 2021 | B2 |
20150000766 | Arizpe | Jan 2015 | A1 |
20150129210 | Chong | May 2015 | A1 |
20150273419 | Chong | Oct 2015 | A1 |
20170037696 | Lopez | Feb 2017 | A1 |
20170370199 | Witkowski | Dec 2017 | A1 |
20180073308 | Tran | Mar 2018 | A1 |
20180224044 | Penney | Aug 2018 | A1 |
20180283102 | Cook | Oct 2018 | A1 |
20190383125 | Koricanek | Dec 2019 | A1 |
20210102451 | Robinson | Apr 2021 | A1 |
20230053422 | Cook | Feb 2023 | A1 |
20230103589 | Oehring | Apr 2023 | A1 |
20230146951 | Robinson | May 2023 | A1 |
Number | Date | Country | |
---|---|---|---|
20230083234 A1 | Mar 2023 | US |