An embodiment of the invention is described with reference to the figures using reference designations as shown in the figures. Referring to
In operation, the solar cell array collects solar energy and provides power to charge the battery for reliable internal power supply to the power converter delivering power to the data processor, command decoder, and device transceiver, as well as the micromachined field effect electrostatic propulsion thruster array. The data processor is used for management operation of the command decoder and device transceiver for receiving commands and transmitting data respectively through the command receiver antenna and the data transmitter antenna. The data processor controls and monitors controlled thrusting action of the thruster array, and indicates the amount and time of thrust provided, and hence, the amount of remaining propellant in the fuel container. The propellant flows preferably by capillary forces to the thrusters. The propellant may be a gallium-based propellant. Power through the device is routed by electronic conducting traces not shown for convenience. While the thrusters are shown with the thruster array on the top of a cube, side placement of the thruster array can be realized for providing side thrusting as desired. The cube design is an exemplar one as other shapes could be used. Placement of antennas, solar cells, electronics, and thrusters can be disposed about the device in various configurations as desired.
The modular microthruster device is essentially an assembled microchip that can conveniently include electronic processors and command receiver chips or processors typically disposed on exterior locations, though internal dispostions may be desirable. The propellant container can be equipped with a heater, as needed, to keep the propellant liquid as environmental conditions require. The propellant wick is a passive propellant acquisition device, such as a screen, that can used as needed. The device shape, such as a cube, can be made on the order of one centimeter on the sides and can be bonded to appropriate spacecraft surface locations where ever directional thrust is desired. The thrust level of a device is determined by the number of microthrusters activated on the assembly face of the device as well as pulse modulation of an accelerating voltage from the power converter while the propellant amount and thus total impulse obtainable is determined by the quantity of propellant stored within the device. The modular shape of the devices is preferably cubical, but different volume and shapes of the device allow for a large range of accumulative thrust and total impulse capabilities distribution on the surfaces of the spacecraft. The modular shapes can be dictated by the most effective propellant wicking or other propellant acquisition means employed. The implementation of the modular device in a cube shape is illustrative only. There are many other possible packaging shapes, and sizes, with various internal details that can accomplish the same modular purpose.
Referring to
In operation, the system relies upon necessary communications, power supply, and thrusting in an array arrangement. The system has data and command communications through either hard-wire contacts or through electromagnetic propagation using antennas, or both. Power for operating the devices can be from solar cell energy collection or through the system power supply, or both. As more system thrust is desired at various locations of the spacecraft surface, the devices can be disposed in various numbers and at various locations as desired. The preferred form shows only one such arrangement in a square device in a rectangular array arrangement for an exemplar maximum packing densities on a portion of the surface of the spacecraft using the preferred cubical device shape. Further, the shape of an individual device need not necessarily be square as shown, but could also preferably be rectangular, hexangular, triangular, or otherwise to meet various design density and placement requirements about the spacecraft surface.
Micron-sized field effect electrostatic propulsion thrusters are made by micromachining and microchip assembly using conventional manufacturing techniques so that the propulsion thruster gaps are made in the order of micron-sizes and the cube in the order of centimeters. The micromachined field effect electrostatic propulsion thruster device can have any number of different implementation designs and configurations as desired or required. The modular device packaging enables lightweight thrusting in various configurations and in any amount of accumulated directional thrust, well suited for use on small spacecraft. When the total impulse required is much larger than that deliverable by one device for a propulsion application, the requirement can be met by bonding more of the devices to the surface of the spacecraft at appropriate locations desirable for attitude control and translation propulsion of the spacecraft.
The space propulsion systems use arrays of micromachined field effect electrostatic propulsion thruster devices each having an array of thrusters each having a micromachined micron-sized thruster gap to create very large ion accelerating fields with small applied voltages, resulting in thruster devices having a large specific impulse and large thrust simultaneously. The devices can be machined to be small and lightweight. The modularity of the system enables scalability to attain a very large range of thrusts and total impulses without redesigning, redeveloping, or re-testing each device in the array of devices. The ease of supplying power and communications to the devices, together with the complete flexibility of locations for the attained thrust, provides savings in time and man-hours leading to much more affordable spacecraft.
This modular system provides solutions to various propulsion requirements by providing high-accumulated thrust and high specific impulse simultaneously at very low weight and power requirement, using compact self-contained modular thruster devices that can be inexpensively mass-produced. The modular devices include means to deliver electrical power and propellant to the thruster array, and means to receive commands to control the thruster operation with passive plumbing fuel delivery. Coatings and shields can be used to regulate the thermal environment of the devices. Hard wires or antennas can be used in combination to provide power and commands to the devices from a remote or central system controller. Communications means, power delivery means, and fuel containers can be integrated into the modular devices that can then be glued or bonded to the spacecraft surface where needed. Plated wiring or other hard electrical contact means can be routed from the system controller to the devices disposed at various locations in an array on the surface of the spacecraft. A spacecraft surface can use several plated wiring runs so that the devices can be attached where desired on the surface, singly or in numbers, without any redesign of the devices. Power as well as commands also can be sent to the thruster devices via microwave beams from central system antennas to avoid the need for any wiring runs or hardwired contacts. The devices can have receiving antennas built in, plated on, or otherwise disposed as part of the devices. The spacecraft surface is used to support the devices in desired locations to meet specific thrusts needs about the spacecraft.
These modular devices can be attached to the spacecraft surface where ever needed to provide thrust as needed for spacecraft attitude control, or station keeping, or translation. Power and commands are provided along the spacecraft to and at those locations where thrust is known to be required, or, alternatively at many points where the thrust might eventually be required. Command and power delivery to various locations on the surface of the spacecraft can be provided by many wiring points or wiring runs that can be plated or bonded to the surface of the spacecraft in any array configuration. The devices can be made in any desired shape, using wired or wireless transmission of power, command, and data communications. The micromachined field effect electrostatic propulsion thruster devices can be adapted to meet a wide range of spacecraft propulsion needs well suited for small spacecraft, or in aggregation to larger spacecraft. Those skilled in the art can make enhancements, improvements, and modifications to the invention, and these enhancements, improvements, and modifications may nonetheless fall within the spirit and scope of the following claims.
The invention was made with Government support under contract No. FA8802-00-C-0001 by the Department of the Air Force. The Government has certain rights in the invention.