A typical wristwatch usually includes the following essential parts: a movement housed within a case; a piece of glass attached to an opening in the top of the case that covers the top face of the movement; and a case back enclosing the movement within an opening in the back of the case. The movement is the completed, finished inner mechanism contained inside the watch, not including the case or dial, which is responsible for measuring the passage of time (and optionally other information such as date, month and day).
Movements may be entirely mechanical, entirely electronic (potentially with no moving parts), or a blend of the two. A mechanical watch is a watch that uses a non-electric mechanism to measure the passage of time. They are driven by a spring (called a mainspring) which must be wound periodically, and releases the energy to turn the clock's wheels as it unwinds. They keep time with a balance wheel, which oscillates back and forth at a constant rate. Mechanical movements may be automatic (self-winding) or manual (manual winding mechanism).
An example type of electronic movement is a quartz movement used in quartz watches that utilizes frequency of vibrations of a quartz crystal to accurately regulate the operation of the watch. Quartz movements may be automatic (a self-winding rotor mechanism) or battery powered. The majority of watches made today are equipped with electronic movements that feature an analog time display having rotating hands on a face or dial. Some watches may have both analog and digital time readouts for simultaneous display of different information.
Other watches equipped with electronic movements may include digital displays and small computers that are used in many types of electronic devices. For example, a currently available type of electronic watch referred to as a “smart watch” is capable of wireless connectivity via FM broadcasting to provide consumers access to news, weather, sports, stocks, instant messenger, e-mail, and horoscopes on a liquid crystal display (LCD). The type of components found inside the case of a smart watch may include a speaker, a printed circuit board (PCB), a processor, a memory, a radio receiver chip, a rechargeable battery, and an inductive charging coil. The watch may be recharged by placing the watch in a watch stand, and plugging the watch stand into the wall. When a coil attached to the contact surface on the back of the watch comes in contact with a charging plate on the watch stand, the smart watch battery is charged through induction.
Although there may be some differences between the processes used to manufacture a mechanical movement and an electronic computer-based movement, both types of movements are assembled as a collection of parts in what can be characterized as a vertical watchmaking manufacturing process.
Consider by way of example, the process used to manufacture a mechanical watch movement. A mechanical watch movement begins with a raw movement or ébauche, which refers to an incomplete watch movement that is sold as a set of loose parts, comprising a main plate, bridges, a train, a winding and setting mechanism and a regulator. The timing system, the escapement, mainspring, dial, and hands, however, are not usually parts of the “ébauche”.
Very few watch manufacturers are capable of producing the parts necessary for ébauches, movements, and the cases to support the production and assembly of finished watches. Instead, most watch companies purchase complete movements from a supplier, such as ETA, fit the movements with dials and hands, and then encase the movements within in-house or contractor-supplied cases. Some watch companies may purchase ébauches from a supplier, finish (polish and decorate) the parts, optionally modify parts of the movement and/or add custom components, and assemble the parts to create a higher-quality or custom movement.
The final steps of the process is case fitting in which the movement is fitted inside the case, which may require further assembly, and finally, case closure. During case fitting, the watch movement is fitted into the case tightly so that it does not move, and in some cases, may be physically attached to the case with screws. After fitting, the case is enclosed with a case back for proper dust and water resistance. Typically, watch companies take great care in how the case back is affixed to the case because this assembly point can be critical for the water tightness of a watch. For example, one method for achieving water resistance is to use gaskets between the case and case back to form a seal, used in conjunction with a sealant applied on the case to help keep water out. Some case backs may be screwed in, or onto, the case.
The vertical watchmaking manufacturing market for electronic movements is similar in that very few companies make all the parts necessary to build a completed electronic watch. Instead, the companies typically purchase electronic movements from suppliers and assemble electronic movements into the cases to complete the watch similar to the above.
One aspect of the exemplary embodiment provides a portable device comprising a modular movement. The modular movement has a body housing a plurality of layers that include a top layer of glass, and a movement subassembly for displaying information, including time. The modular movement includes all parts necessary for power and operation, including the displaying of the information, such that the modular movement is fully functional standalone. The portable device further includes a case, which includes a receptacle for removably receiving the modular movement without need for a tool, such that the modular movement is user-interchangeable with another case of another portable device.
Another embodiment includes a method for manufacturing an interchangeable movement. Aspects of the exemplary embodiment include assembling parts into a movement subassembly, such that the subassembly is a complete working mechanism; enclosing the subassembly in a body; and integrating a glass with the body, thereby creating a modular movement. The case of a portable device is also required to have a receptacle for removably receiving the modular movement without tools and in a manner where the glass of the modular movement is visible through the case when the modular movement is inserted.
A further exemplary embodiment discloses a modular movement. A modular movement comprises a movement subassembly that includes a touchscreen; a printed circuit board including a memory and a processor for executing software that displays a user interface on the touchscreen and operates the modular movement, and a battery, wherein the subassembly is a complete working mechanism; and a body for housing the movement subassembly such that the touchscreen is integrated with the body, and wherein the modular movement is removably insertable into a case of a portable device without tools and in a manner whereby the touchscreen of the modular movement is visible through the case.
Yet a further exemplary embodiment discloses a portable device comprising a modular movement and a case. The modular movement comprises a body housing a plurality of layers, including a touchscreen; a printed circuit board including a memory and a processor for executing software that displays a user interface on the touchscreen and operates the modular movement, and a battery. The case includes a receptacle for removably receiving the modular movement without need for a tool, such that the modular movement is interchangeable with at least a second portable device. The user interface of the modular movement is controlled by a user interacting with the touchscreen through touch, such that a button or a dial for controlling the user interface are completely absent from both the modular movement and the case.
The present invention relates to a modular movement that is both fully functional standalone as well as interchangeable in other portable devices, such as watches. The following description is presented to enable one of ordinary skill in the art to make and use the invention and is provided in the context of a patent application and its requirements. Various modifications to the preferred embodiments and the generic principles and features described herein will be readily apparent to those skilled in the art. Thus, the present invention is not intended to be limited to the embodiments shown, but is to be accorded the widest scope consistent with the principles and features described herein.
Whether a watch utilizes a mechanical or electronic movement, most conventional watches have been designed so that consumers can change the straps or bands of a watch and even interchange the straps between different watches—either for aesthetic or functional reasons. For example, a consumer may wish to change between a casual and a formal strap, change between different color straps, and/or change between a non-waterproof and a waterproof strap, for instance.
One aspect of the present invention is the recognition that due to the history of watchmaking and the resulting vertical watchmaking manufacturing process, conventional watches have not been designed so that consumers can readily change the movement of a watch. That is, due to current construction techniques, the manner in which movements are affixed within the case and/or the manner in which the case back is attached to the case, tools and some amount of skill would be required to remove a movement. In most instances, some disassembly of the movement may be even necessary to remove the movement from the case, thereby ensuring that the movement will no be longer fully functional after removal without repair and reassembly.
Furthermore, even assuming the consumer succeeded at removing a movement from a case, the manner in which watches and movements are constructed today would cause further problems for the consumer. For example, if a consumer removed a mechanical movement from a completed watch, the fully functional movement would include hands and dials. However, once the movement is removed from the case and the attached glass, the hands and dials of the movement would be unprotected and could easily be damaged by handling. In this regard, since with convention watches it is the watch that is water resistant or waterproof, removing the movement from the watch may expose the movement to moisture, for which the movement would have little if no protection.
The exemplary embodiment of the present invention provides an improved movement and method of manufacturing thereof that enables consumers to change the movement of a portable device, such as a watch. No tools or disassembly/assembly of either the portable device or the movement are necessary; and the movement itself is modular and durable in construction such that the movement is fully-functional standalone and therefore retains its functionality after removal from the portable device. The modular movement is also easily user-interchangeable with other portable devices.
According to the exemplary embodiments, the modular movement 12 includes a body 16 that houses a plurality of layers, including an integrated top layer of glass 18, and a movement subassembly 20, for displaying information, including time.
As used herein, the term “modular” means that the body 16 of the modular movement 12 includes all parts necessary for operation and power of the modular movement 12. Thus, the modular movement 12 of the exemplary embodiment is fully functional in a standalone state. However, according to the exemplary embodiment, the case 14 of the portable device 10 includes a receptacle 22 for removably receiving the modular movement 12 without need for a tool, such that the modular movement 12 can be either used with the case 14 of the portable device 10 and/or is user interchangeable with the cases of other portable devices having the same or similar types of receptacles.
When the modular movement 12 is used in a portable device 10, such as a watch, the glass 18 of the module of movement 12 becomes the glass 18 of the portable device. The glass 18 may include any type of transparent or semitransparent material layer on a top surface of the modular movement 12, including sapphire, crystal, plexiglass, and the like.
In one embodiment, the body 16 may be constructed to provide the modular movement 12 with a degree of water resistance and dust protection. For example, the body 16 may be a single shell except for an opening for the glass 18 and once the glass 18 is in place, the glass 18 may by sealed with the body 16 using traditional waterproofing methods. In another embodiment, the body 16 may be assembled in separate pieces but then sealed once assembled.
Providing a modular movement 12 having an enclosed and self-contained body 16 including the glass 18 is in contrast to traditional watchmaking methods in which 1) the parts of the movement are not integrated into a body, and 2) the watch glass is typically affixed to the watchcase, rather than to the watch movement.
In one exemplary embodiment, the modular movement 12 and the receptacle 22 in the case 14 are made industry standard sizes, such that different modular movements 12 manufactured and sold by a one set of manufacturers fit within the receptacles of different cases manufactured and sold by another set of manufacturers, for example.
Although
As used herein, the portable device 10 may include a combination of both the case 14 and the modular movement 12. But the term case 14 may denote the body of the portable device 10 into which the receptacle 22 is formed and into which the modular movement 12 is to be inserted. Thus, for small portable devices 10, such as a watch, the proportionate size of the portable device/case to the receptacle 22 is small (
According to an exemplary embodiment, the modular movement 12 may be a mechanical movement or an electronic movement.
Another step to the process is requiring the cases 14 of portable devices 10 to each have a receptacle 22 for removably receiving the modular movement 12 without tools and in a manner where the glass of the modular movement 12 is open or at least visible through the case 14 when the modular movement 12 is inserted (block 206).
The receptacle 22 should be designed so that no tools are required for modular movement 12 insertion or ejection so that the modular movement 12 is easily user interchangeable. According to the exemplary embodiment, several different latching mechanisms may be used to retain the modular movement 12 inside the receptacle 22. For example, the receptacle 22 may be provided with internal latching mechanisms such as snaps, clamps or springs, for example. In another embodiment, a mechanism may be used that pressurizes the modular movement 12 into the receptacle 22 from the outside of the case 14. In yet another embodiment, contacts 510 on the modular movement 12 may be provided with springs that hold the modular movement 12 in place when inserted.
In yet another embodiment, at least one wall of the receptacle 22 may be provided with one or more magnets that have sufficient attraction force to hold modular movement 12 in place when inserted. A spring loaded decoupling mechanism could be used to then eject the modular movement 12.
Also, in a watch or other wearable portable device 10 embodiments where the back of the case 14 is open, any of the latching mechanisms may be calibrated to account for when the case 14 is worn and the modular movement 12 is inside the receptacle 22, the modular movement 12 may be held inside the receptacle 22 at least in part by the wearer's body (e.g., by a wrist).
Requiring no tools for insertion or ejection of the modular movement 12 may be a function of both the design of the receptacle 22 and the case 14. The design of the receptacle 22 and case 14 also affect how the inserted modular movement 12 will be visible through the case 14.
In some embodiments, the modular movement 12 may have its front and back sides open in the front and rear of the case 14. However, some measure of protection may be provided by configuring the receptacle 22 so that the four sidewalls 300 of the receptacle 22 fully cover the four remaining sides of the modular movement 12, as shown. Also, although openings for the modular movement 12 are shown in the front and rear of the case 14 via the faceplate 302 and receptacle 22, in another embodiment, the receptacle 22 may also be formed on a side, bottom or top of the case as well, particularly for other types of portable devices 10 and form factors.
In a further embodiment, the faceplate 302 may be provided in any shape desired, such as square, round, oval, triangular or rectangular, for instance, and the shape of faceplate 302 may be different than the shape of the modular movement 12. Thus, in the case of a watch, although a square or rectangular modular movement 12 is inserted into a square or rectangular receptacle 22 in the case 14, the modular movement 12 may be given the appearance of a round face by providing the case 14 with a round faceplate 302. Similarly, in the case of a round modular movement 12, the case may be given a square or rectangular faceplate 302 if desired. Accordingly, the case 14 design has no restrictions on what faceplate/movement shape combinations that can be used. Any shaped faceplate 302 may be applied to the case 14 for use with any shaped modular movement 12 and correspondingly shaped receptacle 22.
According to another aspect of the exemplary embodiment, the modular movement 12 is implemented as a computer-based electronic movement that is used to power the portable devices into which it is inserted, as described below.
The PCB 504 may include components (described below) such as a memory and processor for executing software that displays a user interface on the touchscreen 506 and that operates the modular movement 12b; and an optional communications interface for receiving data remotely, which may be displayed and updated on the touchscreen 506.
Other components of the modular movement 12b may include an antenna (not shown) that wraps around the body 16 (alternatively embedded in case 14), and a set of contacts 510 inserted into the body 16 and in contact with the PCB. The contacts may be used for recharging the battery (the contacts are both power and ground) and/or for serialized communications. The contacts can also be used for orientation purposes for the user to tell which side of the modular movement 12b is up or down when inserting the modular movement 12b into the receptacle 22 of the case 14. In one embodiment, the contacts 510 are located on a side of the modular movement 12a that is in the receptacle 22 opening so that the portable device 10 as a whole can be placed in a dock and the contacts 510 used to abut the contacts of the dock. In another embodiment, the contacts 510 are located on a side of the modular movement 12b that face inward into the receptacle 22 for abutting with contacts in the receptacle 22. In yet another embodiment, the contacts 510 may be located on the modular movement 12b such that the contacts 510 wrap around at least two side of the modular movement 12b to be used in both manners.
During assembly, the contacts 510 are inserted into the body 16; and the layers of components are assembled as shown into a movement subassembly 20. The movement subassembly 20 is then inserted into the body 16 and the body is sealed, creating the computer-based modular movement 12b.
Computer 600 may include components such as processors 602, memories 604, inputs/outputs 606, power manager 608, a communications interface 610, and sensors 612. In one embodiment, one or more of the components of the computer 600 may be implemented on a single chip.
The processors 602 may include at least one microprocessor 614, a digital signal processor (DSP), a global positioning chip (GPS) 616, and a clock 620. Microprocessor 614 and/or DSP may be capable of concurrently executing multiple software routines, including system code, to control the various processes of the modular movement 12b. In one embodiment, microprocessor 614 may comprise an Advanced RISC Machine (ARM) processor or the like may be used, for example. GPS 618 may process received signals and with or without microprocessor 614 determine position information such as location, speed, direction, and time.
Clock 620 may be used as an internal timing device for the computer 600. Clock 620, which may also be referred to as a real-time clock or system clock, inputs to the microprocessor 614 a constant flow of timing pulses for operation of the microprocessor 614. Clock 620 may also keep track of the time of day and makes this data available to the software routines executing in microprocessor 614. In one embodiment, clock 620 comprises a silicon clock oscillator implemented using micro-electro-mechanical systems (MEMS) technology. In another embodiment, clock 620 may utilize a quartz crystal oscillator.
Memories 604 may include a random access memory (RAM) 622 and a nonvolatile memory 626. RAM 622 may be used as the main memory for microprocessor 614 for supporting execution of the software routines and other selective storage functions. Non-volatile memory 626 is capable of holding instructions and data without power and may store the software routines for controlling modular movement 12b in the form of computer-readable program instructions. In one embodiment, non-volatile memory 626 comprises flash memory. In alternative embodiments, non-volatile memory 626 may comprise any type of read only memory (ROM).
I/Os 606 may include a display controller 630, an audio chip 632, and a touchscreen controller 634. Display controller 630 may access RAM 622 and transfer processed data, such as time and date and/or a user interface, to the touchscreen 506 for display. The audio chip 632 is coupled to an optional speaker (not shown) and interfaces with microprocessor 614 to provide audio capability for the modular movement 12b. In another embodiment, the audio chip 632 may be coupled to both a speaker and a microphone (not shown). In this embodiment, a water resistant/proof speaker and microphone may be used to retain water resistance of the modular movement 12b. In an alternative embodiment, the modular movement 12b may be implemented without sound capability, in which case no audio chip 632, speaker or microphone is necessary.
In the embodiment where the audio chip 632 is coupled to both a speaker and microphone, the microphone may record voice input that is first processed by the audio chip and then input to the microprocessor 614 for further processing. The audio chip 632 may include hardware and/or software that converts analog voice into pulse code modulation (PCM) or Adaptive Differential PCM (ADPCM) digital code and vice versa, as well as for compressing and decompressing the PCM or ADPCM digital audio signal. In one embodiment, the processed voice input may be stored for subsequent playback. In another embodiment, the processed voice input may be transferred to communications interface 610 for wireless transmission.
Touch controller 634 may interface with the touchscreen 506 to detect touches and touch locations and pass the information on to microprocessor 614 for determination of user interactions. Another example I/O 606 may include a USB controller (not shown).
Power manager 608 communicates with the microprocessor 614 and coordinates power management for the computer 600 while the computer is drawing power from the battery 502 during normal operations. In one embodiment, the battery 502 may comprise a rechargeable, lithium ion battery or the like may be used, for example. The power manager 608 includes a voltage controller 636 and a charging controller 638 for recharging the battery 502. Voltage controller 636 may regulate battery voltage to the rest of the computer 600, and charging controller 638 may manage appropriate voltage levels to properly charge the battery 502. Power manager 608 may further include a microcontroller (not shown) in one embodiment.
The communications interface 610 may include components for supporting one-way or two-way wireless communications. In one embodiment, the communications interface 610 is for primarily receiving data remotely, including streaming data, which is displayed and updated on the touchscreen 506. However, in an alternative embodiment, besides transmitting data, the communication interface 616 could also support voice transmission. In an exemplary embodiment, the communications interface 610 supports low and intermediate power radio frequency (RF) communications. The communications interface 610 may include one or more of a WiFi transceiver 640 for supporting communication with a WiFi network, including wireless local area networks (WLAN), and WiMAX; a cellular transceiver 642 for supporting communication with a cellular network; Bluetooth transceiver 644 for low-power communication according to the Bluetooth protocol and the like, such as wireless personal area networks (WPANs); and passive radio-frequency identification (RFID) 646. Others wireless options may include baseband and infrared, for example. The communications interface 610 may also include other types of communications devices (not shown) besides wireless, such as serial communications via contacts 510 and/or USB communications, for example.
Sensors 612 may include a variety of sensors including a MEMS accelerometer 648, and any number of optional sensors 1-n. MEMS accelerometer 648 may be used to measure information such as position, motion, tilt, shock, and vibration for use by microprocessor 614. The computer 600 may additionally include any number of optional sensors 1-n, including environmental sensors (e.g., ambient light, temperature, humidity, pressure, altitude, etc), biological sensors (e.g., pulse, body temperature, blood pressure, body fat, etc.), and a proximity detector for detecting the proximity of objects. In one embodiment, the proximity detector may be implemented as an infrared data association (IRDA) proximity detector. The computer 600 may display the information measured from the sensors 612, analyze the information by microprocessor 614 and display the analyzed information, and/or transmit the raw or analyzed information via the communications interface 610. In one embodiment, not all of the sensors 612 may be located on PCB 504.
In a further aspect of the exemplary embodiment, the modular movement 12b may include more than one battery 502 and/or the portable device 10 may include one or more external batteries (not shown). In this embodiment, the modular movement 12b may be configured via the software routines and power manager 614 to selectively determine whether to draw power from the battery or batteries 502, the external battery or batteries, or a combination thereof depending on a variety of factors such as current operating conditions and the percentage of battery power remaining in each of the batteries. In the case of a watch, for example, a band and case assembly may include a left strap and a right strap, and may further include a left battery in the left strap and a right battery in the right strap. In this embodiment, the modular movement 12b may be configured to selectively determine whether to use battery 502, the left battery, and/or the right battery, or some combination of the three.
In a further aspect of the exemplary embodiment, the receptacle 22 of the standard size that is designed to receive the modular movement 12b may be built into the case of any type of portable device 10.
Thus, according to the exemplary embodiment, the modular movements 12b made by the same or different manufacturers may be interchangeable by users into various portable devices 10 made by different manufacturers due to the standard form factor designs of the modular movements and receptacles 22. Once inserted into the portable device 10, the modular movement 12b operates and optionally powers the portable device 10. If the modular movement is equipped with the user's personal information and wireless connectivity, the user may carry the modular movement 12b around wherever the user goes and may plug the modular movement 12b into whatever compliant portable devices 10 are available.
For example, consider the scenario in which a user wakes up in the morning, and while shaving plugs the modular movement 12b into a receptacle 22 next to the mirror. Thereafter, the modular movement 12b streams stocks, weather and the like for the user via an Internet connection made using the RF communications interface 610. When it is time to leave for work, the user removes the modular movement 12b from the receptacle 22 and inserts the modular movement 12b into his or her watch 710 or cell phone handset 700, and takes the modular movement 12b along. In addition, if the modular movement 12b is equipped with RFID, the modular movement 12b may be used for automatic payment of goods and services. The user may use the modular movement 12b to carry or access his or her personal information, such as email, contacts, voicemail, etc., stream real-time data and media, and may even use the modular movement 12b in the place of cash and credit cards.
It should be noted that the user interface 800 has no buttons on the modular movement 12b. Instead, the user interface 800 of the modular movement 12b is controlled entirely by the user interacting with the touchscreen 506 through touch, such that a button or a dial for controlling the user interface are completely absent from both the modular movement and the case 14, thereby simplifying user interface 800 and saving manufacturing costs. In one embodiment, a button may be provided on the side of the modular movement 12b, for resetting, but not for controlling user interface 800. In an alternative embodiment, the modular movement 12b may be automatically reset when first plugged-in to be recharged, or the recharging cradle may be provided with a reset button.
In the embodiment where the touchscreen 506 of the modular movement 12 is open through the faceplate 302 of the case 14 and is slightly below the top of the case (e.g,
In a further embodiment, the user interface may be provided with auto configuration settings. In one auto configuration embodiment, once the modular movement 12b is inserted into the receptacle 22 of the case 14, the modular movement 12b may be configured via contacts 510 or wirelessly to automatically determine characteristics of the case 14, such as the make, model, and shape of the faceplate 302 and/or receptacle 22 opening. Using the characteristics of the case 14, the modular movement 12b may automatically configure its user interface 800 accordingly. For example, if the modular movement 12b detects that it is inserted into a case (e.g., via a corresponding set of contacts in the receptacle) having a rectangular or square faceplate 302 that does not overlap the glass 18 of the touchscreen 506 in any way, then no changes to the user interface 800 need to be made. If, however, the modular movement 12b detects that it is inserted into a case having a round or oval faceplate 302 that overlaps the corner of the touchscreen 506, and therefore eliminates areas of the screen space, i.e., the corners, then the modular movement 12b may automatically reconfigure the user interface 800 to display information only in the available areas of the touchscreen 506.
In another auto configuration embodiment, the orientation of user interface may automatically change in response to the modular movement 12b detecting a change in the orientation of the modular movement 12b.
A modular movement that is both fully functional standalone and interchangeable in other portable devices, such as watches, has been disclosed. The present invention has been described in accordance with the embodiments shown, and one of ordinary skill in the art will readily recognize that there could be variations to the embodiments, and any variations would be within the spirit and scope of the present invention. For example, the portable device may be provided without communication capability and used to store a user's personal information, such as medical records for, instance.
In addition, the embodiments can be implemented using hardware, software, a computer readable medium containing program instructions, or a combination thereof. Software written according to the present invention is to be either stored in some form of computer-readable medium such as memory or is to be transmitted over a network, and is to be executed by a processor. Consequently, a computer-readable medium is intended to include a computer readable signal, which may be, for example, transmitted over a network. Accordingly, many modifications may be made by one of ordinary skill in the art without departing from the spirit and scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
1289155 | Goal | Dec 1918 | A |
1462076 | Spiro | Jul 1923 | A |
2665542 | Sheldon | Jan 1954 | A |
4264969 | Walker et al. | Apr 1981 | A |
4462697 | Thompson | Jul 1984 | A |
4742503 | Braun et al. | May 1988 | A |
5005161 | Boilen | Apr 1991 | A |
5392261 | Hsu | Feb 1995 | A |
5657298 | Choay | Aug 1997 | A |
6158884 | Lebby et al. | Dec 2000 | A |
6326901 | Gonzales | Dec 2001 | B1 |
6431746 | Jujo et al. | Aug 2002 | B1 |
6477117 | Narayanaswami et al. | Nov 2002 | B1 |
6525997 | Narayanaswami et al. | Feb 2003 | B1 |
6527436 | Ng | Mar 2003 | B1 |
6549791 | Jeon et al. | Apr 2003 | B1 |
6556222 | Narayanaswami | Apr 2003 | B1 |
6570823 | Gilomen et al. | May 2003 | B1 |
6720860 | Narayanaswami | Apr 2004 | B1 |
6795377 | Gorden | Sep 2004 | B2 |
6861946 | Verplaetse et al. | Mar 2005 | B2 |
7081905 | Raghunath | Jul 2006 | B1 |
7193606 | Barnett et al. | Mar 2007 | B2 |
7286063 | Gauthey et al. | Oct 2007 | B2 |
20030151982 | Brewer et al. | Aug 2003 | A1 |
20040057578 | Brewer | Mar 2004 | A1 |
20040120224 | Meylan | Jun 2004 | A1 |
20060018202 | Girardin et al. | Jan 2006 | A1 |
20060233053 | Klein | Oct 2006 | A1 |
20060291336 | Hyun | Dec 2006 | A1 |
20070042821 | Lee et al. | Feb 2007 | A1 |
20070189127 | Pollak | Aug 2007 | A1 |
20070194066 | Ishihara et al. | Aug 2007 | A1 |
20070253290 | Aire | Nov 2007 | A1 |
20070279852 | Daniel et al. | Dec 2007 | A1 |
20080276168 | Mansfield et al. | Nov 2008 | A1 |
20090036174 | Brandenburg et al. | Feb 2009 | A1 |
20090036175 | Brandenburg et al. | Feb 2009 | A1 |
Number | Date | Country |
---|---|---|
2399253 | Aug 2004 | GB |
Number | Date | Country | |
---|---|---|---|
20090196124 A1 | Aug 2009 | US |