The present invention relates to electric machines and in particular to multi-phase electric motors for use in a wheel hub of an electric vehicle.
Electrically powered vehicles require electric motors that are simple, safe, highly efficient and provide good performance. Electric motors generally fall into one of two types, those with a high operating voltage and those with a low operating voltage (typically 50 V or less). High voltage electric motors clearly pose a greater risk of electric shock to people and animals when used in a vehicle and are thus subject to stringent safety requirements, which render them a complex and consequently high cost solution. In order to provide the same power, low-voltage motors require a higher operating current, since power is the product of current and voltage. However, operating conventional low voltage three-phase electric motors with high winding currents poses several problems including the need for larger cables and connectors a more complex controller for high current switching, larger capacitance requirements and low inductance. In addition, the heat losses or copper losses (coil resistance×coil current squared), due to the resistance of the windings become significant.
WO 2004073157 describes a low-voltage electric motor with distributed winding intended to address this problem. In this motor the total current is distributed across several coils or windings which significantly reduce the winding current. However, each coil is controlled separately which requires a complex controller with a large amount of electronics. A low voltage in-wheel three-phase electric motor is also described in GB2462940A. This motor has a number of independently controlled coil sets distributed around the stator. Each coil set is made up of three coil sub-sets, where each coil sub-set is driven at a different phase. However, the same three phases are used in each coil set. This arrangement provides some simplification over the disclosure of WO 2004073157, however, the controller is still complex as it requires an independent CPU controller for each coil set.
Thus, while it is known to provide low voltage and high current electric motors, there is a need to provide such motors in a simple and cost effective way that does not compromise on high performance.
The above and other objects are achieved in a multi-phase electric motor comprising a rotor and a stator, wherein the rotor comprises a number of magnets directed towards the stator, and wherein the stator includes a plurality of phase windings arranged around a circumferential surface of the stator and directed towards the magnets, the phase windings being connected to control units adapted to selectively apply a current to the phase windings to induce an electromagnetic force which acts upon the magnets of the rotor to effect a rotation of the rotor The motor comprises at least two control units, and each control unit is configured to control the supply of current to three phase windings such that a different phase current is supplied to each of the three phase windings with a phase shift between the different phase currents being 120°. Moreover, no two control units utilise the same current phase.
By utilising two or more control units, each essentially operating as simple 3-phase controllers controlling current phases that are separated by 120°, yet each controlling different phases from the other control unit or units, current can be distributed over at least six phases. Thus low voltage operation is enabled without the associated disadvantages of high currents and at the same time, control is vastly simplified over conventional systems.
Preferably, the phase windings are driven by one of m different current phases, where m is a multiple of 3 and at least equal to 6. It is then favourable when the phase shift between current phases is 360°/m
In order to achieve optimal control it is particularly advantageous when the arrangement of phase windings around the circumferential surface of the stator is such that each phase winding is driven by a current that is shifted in phase by 180°+180°/m relative to the current in an adjacent phase winding. The control units are thus not connected to sequentially arranged phase windings. Instead, the phase windings of all coil units are interleaved. Hence when two control units are provided, the first control unit controls the first, third and fifth phase winding while the second control unit controls the second, fourth and sixth phase winding.
According to a particularly preferred embodiment of the invention, the phase windings controlled by a single control unit are selected from the sequence of phase windings as follows: if k is the number of control units controlling the supply of a total of m phase currents to phase windings, each of the k control modules is configured to control phase windings i, i+m/3, i+m*⅔, where i is an integer satisfying 1≦i≦k.
The three phase windings controlled by each control unit may be arranged either in a wye-configuration (Y-configuration) or in a delta configuration.
In accordance with a preferred embodiment of the present invention, each control unit comprises a 3-phase half bridge circuit configured to energise the phase windings preferably with a substantially rectangular current waveform.
This type of controller circuit is simply to construct or readily available and constitutes a simple but highly effective form of control. The control is particularly simple, when a rectangular waveform is used to drive the phase windings, as the controller circuit need only energies two of the three connected phase windings at any one time. Alternatively, the 3-phase half bridge circuit may be configured to use a substantially trapezoidal or sinusoidal current waveform.
In accordance with a further embodiment, at least one controller is arranged to control the operation of at least one control unit. In such an arrangement, the controllers for each control unit may be independent of one another or networked in some way to provide for an exchange of information.
In a preferred embodiment a central controller is arranged to control the operation of all control units in order to provide sufficient fine control to rotation of the rotor by controlling the sequence of application of each of the different phase currents to the phase windings.
The controller or controllers preferably utilise pulse width modulation.
In accordance with a further embodiment, each phase winding comprises one or more coil elements connected in parallel or series. Preferably, each phase winding comprises at least two coil elements that are distributed evenly around the circumferential surface of the stator.
In accordance with a further aspect, the invention is directed to an electrically powered vehicle with at least one wheel, comprising an in-wheel electric motor as described above.
Further objects and advantages of the present invention will become apparent from the following description of the preferred embodiments that are given by way of example with reference to the accompanying drawings. In the figures:
In the following description reference is made variously to an electric machine and to an electric motor. The term, “electric machine” is generally understood to cover both an electric motor and an electrical generator. In the context of the present invention, however, the term electric motor is not limited to an arrangement that converts electrical energy into motion, but is also intended to encompass an arrangement in which motion can generate power. The terms electrical machine and electrical generator are thus used interchangeably throughout this disclosure without any intended distinction in their meaning. Throughout the various figures referred to in the following description, like reference numerals have been used for like parts.
The rotor 2 is also made of magnetic material, for example steel, and has 20 magnets 7 fixed on an inner surface. The magnets are arranged with alternating diametric polarity N-S and S-N and are spaced from one another by a very small gap. The number of magnets 7 is essentially a design choice however, it is important that the magnets 7 and coils can never align perfectly, as the motor could come to rest in a position in which no rotational forces are applied. In addition, cogging torque can be reduced by selecting the number of magnets that is close to the number of coil elements 6.
When the rotor 2 is made to rotate around the stator 1, such that the magnets 7 pass over the coil elements 6, a periodic induced voltage or emf is induced in the elements 6 as a result of magnetic flux changes.
While in the illustrated embodiment, the induced voltage is essentially trapezoidal in shape, this depends on a number of known factors, including the size and shape of magnets, the stator geometry, the type of windings, etc, so that one of ordinary skill in the art would be able to modify the machine to achieve a different induced voltage waveform by altering elements of the design.
In order to cause rotation of the electric motor, each phase winding 6 must be energized by current flow in the correct sequential manner. An ideal current waveform would have the same shape and sign as the induced voltage illustrated in
By distributing the current over nine phases in this manner, it is possible to provide a suitable current switching sequence for control of the motor with minimum torque ripple. More generally, it has been observed that by employing multiples of three phases, but at least six phases, it is possible to reduce the torque ripple by several factors when compared to motors using three or fewer phases. In addition, the control of the current waveforms can be achieved in a particularly simple fashion as is described below.
Referring to
This modular approach of controlling the phase winding current can be applied to any multi-phase configuration where the number of phases is a multiple of 3, i.e. m=k*3, where k is an integer greater or equal to 2 and m is the number of phases. Thus this modular 3-phase control can be applied when using 6, 9, 12, 15, 18 or more phases, for example. More generally, for m phase windings with a phase shift of 360°/m, k control modules are required. Moreover, each of the k control modules will control coil windings i, i+m/3, i+m*⅔, where i is an integer satisfying 1≦i≦k. Applying this to the exemplary embodiment of
Although in the exemplary embodiment, the drive currents have a rectangular waveform, it will be appreciated that other periodic functions may be used for the controlling current in each 3-phase control modules 10 in order to adapt these to other magnetic motors, including, but not limited to, a trapezoidal waveform and sinusoidal waveform. Each control module 10 can be controlled independently of the others.
While the control module 10 illustrated in
A single three-phase control module 10 is depicted in
The control signals for each of the switching elements 100 are provided by a processing unit 20 (CPU) as shown on
The use of modular control modules and a common processing unit means that a significant reduction in hardware is achieved for multi-phase motor drives. Moreover, by the proper selection of phases it is possible to control any multiple of 3 phases, in a very simple fashion yet achieve optimum current distribution in a low-voltage electric motor.
While in the exemplary embodiment, a single common processing unit 20 or controller is provided for controlling the operation of all control units 10, it will be understood that this function can be implemented by individual dedicated controllers arranged to control one or more control units in response to position signals and the measured current.
As explained with reference to
It should be understood that the invention is not limited to the precise embodiment shown and the above described arrangement can be applied to a range of different electric machines, including, but not limited to, PSMS electric machine, reluctance machines and linear electric motors.
Number | Date | Country | Kind |
---|---|---|---|
201300154 | Jun 2013 | SI | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2014/061831 | 6/6/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/198663 | 12/18/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
20020018823 | Ito | Feb 2002 | A1 |
20030085627 | Lipo et al. | May 2003 | A1 |
20070241699 | Osada et al. | Oct 2007 | A1 |
20110057591 | Tagome et al. | Mar 2011 | A1 |
20110101906 | Tagome | May 2011 | A1 |
20110163708 | Mukai et al. | Jul 2011 | A1 |
20120049782 | Suzuki et al. | Mar 2012 | A1 |
20130076189 | Kolomeitsev | Mar 2013 | A1 |
20160036359 | Nagata | Feb 2016 | A1 |
Number | Date | Country |
---|---|---|
102868343 | Jan 2013 | CN |
200802369 | Aug 2009 | EA |
2462940 | Mar 2010 | GB |
2009291040 | Dec 2009 | JP |
2010226899 | Oct 2010 | JP |
2011142744 | Jul 2011 | JP |
1464279 | Mar 1989 | RU |
2004073157 | Aug 2004 | WO |
2009144957 | Dec 2009 | WO |
2010119662 | Oct 2010 | WO |
Number | Date | Country | |
---|---|---|---|
20160134220 A1 | May 2016 | US |