The field of the invention relates generally to fuse holders or fuse blocks, and more specifically to modular fuse blocks adaptable for use with overcurrent protection fuses having opposed, axially extending terminal elements.
Electrical fuses are overcurrent protection devices for electrical circuitry, and are widely used to protect electrical power systems and prevent damage to circuitry and associated components when specified circuit conditions occur. A fusible element or assembly is coupled between terminal elements of the electrical fuse, and when specified current conditions occur, the fusible element or assembly melts or otherwise structurally fails and opens a current path between the fuse terminals. Line side circuitry may therefore be electrically isolated from load side circuitry through the fuse, preventing possible damage to load side circuitry from overcurrent conditions.
A considerable variety of overcurrent protection fuses are known and have been used to some extent with a corresponding variety of fuse holders. Improvements are, however, desired.
Non-limiting and non-exhaustive embodiments are described with reference to the following Figures, wherein like reference numerals refer to like parts throughout the various drawings unless otherwise specified.
The base 102 includes a bottom wall 106 that may be configured in the example shown with a DIN rail slot 108 for ease of mounting the fuse holder 100 in a known manner. Opposing lateral walls 110, 112 extending upwardly from the bottom wall 106, and opposed end walls 114, 116 interconnect the lateral side walls 110, 112 and the bottom wall 106. A portion of the end walls 114, 116 is angled or sloped in the embodiment shown, although this may be considered optional in some embodiments. The opposed lateral side walls 110, 112 each respectively include cutouts 118, 120 extending centrally between the end walls 114, 116 and being open along the upper periphery 122, 124 of the lateral side walls 118, 120 opposite the bottom wall 106. As best seen in
The other side surfaces of the base lateral walls 110, 112 are configured with projections and grooves to allow adjacent bases 102 to be attached to one another, either directly or indirectly, with tongue and groove engagement to form a multiple pole fuse block assembly. The modular fuse holders 100 can therefore be arranged to accommodate any number of fuses in a relatively compact arrangement. Adjacent fuse holders 100 may be mechanically coupled or ganged together by hand and without use of tools in an interlocking manner.
The exemplary fuse 130 for the exemplary fuse holder 100 is further shown in
One or more fusible links or elements (not shown), or a fuse element assembly, is contained within the fuse body 132 and is connected between the fuse terminal elements 134, 136 so that when electrical current through the fuse 130 exceeds a predetermined limit, the fusible elements melt and open the circuit path through the fuse 130.
The base 102 as shown in
As such, when the fuse 130 is installed in the fuse holder 100, the fusible element or elements that extend between the fuse terminals 134, 136 define a conductive current path for current to flow between the fuse clips 144, 146, and in turn completes a circuit path between the line and load side connection terminals 148, 150. When the fusible element or elements operate in response to specified current conditions, however, no current is conducted between the fuse terminal elements 134, 136 and the line side terminal 148 becomes electrically isolated from the load side terminal 150. The fuse 130 must then be replaced to restore operation of the circuitry.
It is important that the fuse 130 not be replaced with another and generally incompatible type of fuse. Because different types of fuses, however, can be relatively easily confused this presents practical concerns to power system administrators because installation of an incompatible fuse can either compromise the overcurrent protection of the electrical system or lead to sub-optimal operation of the power system. The consequences of having a mismatched fuse installed in the fuse holder 100 can be significant. Accordingly, the base 102 includes integrated rejection features in the form of projections 152, 154 to prevent this from happening.
The projections 152, 154 are dimensioned to project interior to the fuse receptacle proximate the fuse clip 146 in the example shown. Replacement fuses having the projection 138 (
The base rejecting projections 152, 154 may be fabricated integrally with the remainder of the base 102 using, for example, injection molding processes using heavy duty plastic materials. The base 102 may be fabricated as a single piece including all the features described above, or may alternatively be fabricated in two or more pieces that are assembled to one another. The fuse clips 144, 146 and connection terminals 148, 150 may be attached to the base 102 in any known manner, including but not limited to the use of mounting fasteners such as screws.
As shown in
The cover 104 in the example shown includes a top wall 170, lateral side walls 172, 174 and end walls 176, 178. The walls 170, 172, 174, 176, 178 generally complete the enclosure of the fuse 130 in the base 102. That is, the cover 170 closed the open top of the base 102 as shown in
The cover 104 may be fabricated into the exemplary shape shown, or alternative into other shapes as desired, via injection molding techniques and the like utilizing for example, non-conductive plastic materials known in the art. The cover 104 may further be fabricated from a transparent material so as to permit viewing of the fuse 130 even when the cover 104 is in a closed position relative to the base 102 as shown in
The cover 104 includes guide projections 190, 192 (
Beneficially, the cover 104 interacting with the base 102 is openable using a two stage path of motion that precludes an inadvertent opening of the cover 104 that may occur using single stage opening covers. More specifically, when the cover guide projections are engaged with the base guide channels and the cover is fully closed as shown in
The path of motion shown by Arrows C may continue until the cover guide projections reach built in stop surfaces 200, 202 (
To close the cover 104, an essentially opposite two stage path of motion is required. For example, the cover may be rotated from the open position shown in
The two stage operation of the cover 104 practically ensures that the cover 104 cannot be opened accidentally or inadvertently. From the fully closed position, any attempt to rotate the cover 104 is frustrated because all four corners of the cover 104 are engaged to the linear guide channels in the base 102. Only when the cover is moved fully in the linear direction of arrows C and the cover 104 easily be rotated, but only after first disengaging one of the ends of the cover 104. The cover 104 and the base 102 will positively prevent any effort to simply rotate the cover 104 to open it.
Further, because the cover 104 is engaged to the base 102 on all four corners thereof, the cover 104 may not easily be simply pulled off the base 102. The four stops (one at each corner at the top of the guide channels) will provide a sufficient resistance to prevent one from inadvertently pulling the cover 104 from the base 102. While it may be possible to remove the cover 104 from the base 102 simply by pulling it, it would require an amount of force well beyond what a person may inadvertently apply. As such, the two stage operation practically ensures that once the cover is closed it will remain closed, absent some intentional effort by a person to remove it.
Further, the cover 104 may not generally be installed to the base 102 using a simple, one stage method of attachment either. Rather, the cover 104 is first preferably engaged at one end by snapping the guide projections in the cover 104 to the guide channels in the base 102, then rotated to a position wherein the opposite end of the cover 104 can be engaged by snapping the guide projections in the cover 104. Then and only then can the cover 104 be retracted to the position shown in
It should not be apparent that numerous variations of the inventive concepts disclosed are possible to create equal or similar benefits. For example, while the illustrated embodiments include guide channels in the base 102 and guide projections formed into the cover 102, this arrangement could easily be reversed. That is, in another embodiment, guide channels may alternatively be formed in the cover 104 and guide projections may alternatively be formed in the base 102. Moreover, combinations of the guide channels and projections may be utilized on the base 102 or the cover 104, so long as the guide channels and projections mutually cooperated to provide the motion paths.
Furthermore, numerous variations in the two stage mode of operation can be envisioned. For example, the linear guide channels described can be curved if desired, such that the cover 104 will follow a curved path rather than a linear one prior to being released for the pivoting or rotating motion. As another example, two stages of linear motion along different paths may be configured with the guide surfaces providing a path to release the cover. Moreover, it may be possible to configure the guide channels such that the cover 104 must be rotated prior to reaching a path of linear motion leading to release of the cover. It is contemplated that more than two stages of operation along different motion paths may be integrated if desired.
As still another example, while in the illustrated embodiments the cover 104 includes exterior facing projections interfacing with interior facing guide channels in the base 102, the cover 104 may alternative be formed with interior facing projections interfacing with exterior facing guide channels in the base 102. Still other arrangements are possible.
The benefits and advantages of the invention are now believed to have been amply illustrated in connection with the exemplary embodiments disclosed.
An embodiment of a fuse holder has been disclosed including: a base having a bottom wall, end walls and lateral side walls defining an open top enclosure for accepting an overcurrent protection fuse; first and second fuse clips located on the base; and a cover extending over at least the first and second fuse clips and selectively positionable relative to the fuse clips in each of an extendable and rotatable position.
Optionally, at least one of the lateral side walls may include a first cover guide element and a second cover guide element formed therein, the first and second cover guide elements spaced apart from one another. The first and second cover guide elements may include one of a channel and a projection. The cover may include spaced apart lateral walls, and the spaced apart lateral walls may each include a first cover guide element and a second cover guide element formed therein, with the first and second cover guide elements being spaced apart from one another. The first and second cover guide elements may include one of a channel and a projection.
The base may define at least one pair of cover guide elements and the cover may define at least one pair of cover guide elements, with one of the pairs of cover guide elements comprising guide channels and the other of the pairs of cover guide elements comprising projections configured to engage the guide channels. The base may be provided with guide channels each located proximate one of the end walls. The cover may include opposed end walls and at least one guide cover projection located proximate each end wall. The guide channels each define a linear axis providing a linear path of movement of the projections therein. The linear path may extend for a length sufficient to provide a clearance for rotation of the cover about one end thereof. At least one of the projections may include a round peg providing a rotatable movement of the cover relative to one of the guide channels after the linear path of movement is completed.
The base and cover may be configured to provide slidable movement of the cover in a first direction and pivotal movement of the cover thereafter. The first direction may be a substantially linear direction, and the linear direction may extend generally perpendicular to a longitudinal axis of the overcurrent protection fuse when installed and engaged to the fuse clips. The cover may be rotatable about either end wall of the base.
An embodiment of a fuse holder has also been disclosed including: a base; first and second fuse clips located on the base; and a cover extending over at least the first and second fuse clips and selectively positionable relative to the fuse clips in an extended position relative to the base, a retracted position relative to the base, and a pivoted position relative to the base.
Optionally, one of the base and the cover may be provided with a guide channel, and the other of the base and the cover may be provided with a guide projection configured to engage the guide channel. The guide channel may define the extended position and the retracted position. The extended position may provide a clearance for pivoting of the cover about one end thereof. The guide channel may be formed with a stop, and the guide projection may be releasable from the guide channel to the pivoted position once the guide projection is located at the stop. The base may include opposed lateral walls, and each of the opposed lateral walls may include spaced apart guide channels. Each lateral wall may also be provided with spaced apart guide projections. The cover may be snap-fit to the base. The cover may be configured to pivot away from the fuse clips in a first direction and pivot away from the fuse clips in a second direction, the second direction opposite to the first direction.
An embodiment of a fuse holder has also been disclosed including: a base; first and second fuse clips located on the base; and a cover extending over at least the first and second fuse clips, the cover postionable relative to the base in a closed position and operable in first and second stages to an opened position providing access to the fuse clips.
Optionally, in one of the first stage and the second stage the cover may be movable in a linear direction away from the fuse clips. The linear direction may extend generally perpendicular to an axis of the fuse when installed in the fuse clips. In one of the first stage and the second stage the cover may be rotatable relative to the fuse clips. At least the first stage may be effected by a guide channel in one of the base and the cover. The cover may be releasable from the base at opposing ends thereof, and the second stage may be effected with only one of the ends coupled to the base. The cover may be snap-fit to the base. The first stage may create a clearance allowing the cover to rotate in the second stage.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
The present application is a continuation application of U.S. patent application Ser. No. 13/186,055 filed Jul. 19, 2011, the complete disclosure of which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3418615 | Canney | Dec 1968 | A |
3976967 | Magherini | Aug 1976 | A |
5076118 | Lawson | Dec 1991 | A |
5171293 | Umemoto et al. | Dec 1992 | A |
5435755 | Chien et al. | Jul 1995 | A |
5515023 | Marach et al. | May 1996 | A |
5590019 | Fox et al. | Dec 1996 | A |
5616054 | Quinlan | Apr 1997 | A |
5820413 | Yamada et al. | Oct 1998 | A |
5969587 | Combas | Oct 1999 | A |
6406331 | Brown | Jun 2002 | B1 |
6650222 | Darr et al. | Nov 2003 | B2 |
6727797 | Bruchmann | Apr 2004 | B1 |
6775148 | Hong | Aug 2004 | B2 |
6853289 | Scoggin | Feb 2005 | B2 |
7355503 | Buettner | Apr 2008 | B2 |
7705706 | Ding | Apr 2010 | B2 |
7982578 | Buettner | Jul 2011 | B2 |
8242874 | Pavlovic et al. | Aug 2012 | B2 |
8419475 | von Zur Muehlen | Apr 2013 | B2 |
20020067240 | Darr et al. | Jun 2002 | A1 |
20030020589 | Scoggin | Jan 2003 | A1 |
20090243786 | Buettner | Oct 2009 | A1 |
20100197157 | Wang | Aug 2010 | A1 |
20100259355 | Buettner et al. | Oct 2010 | A1 |
20110117782 | Su | May 2011 | A1 |
20110117783 | Su | May 2011 | A1 |
20120056708 | Ventura et al. | Mar 2012 | A1 |
20130023150 | von Zur Muehlen | Jan 2013 | A1 |
20130023156 | von Zur Muehlen | Jan 2013 | A1 |
20130109236 | von Zur Muehlen | May 2013 | A1 |
Number | Date | Country | |
---|---|---|---|
20130109236 A1 | May 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13186055 | Jul 2011 | US |
Child | 13719531 | US |