Not applicable.
A large number of systems directed at the optical analysis of samples or materials employ complex optical trains that direct, focus, filter, split, separate and detect light to and/or from the sample materials. Such systems typically employ a number of different elements to achieve the various aspects of foregoing and devote a reasonable amount of space and cost to such components. For example, typical systems employ mirrors and prisms in directing light from its source(s) to a desired destination. Additionally, such systems may include light splitting optics such as beam splitting prisms to generate two beams from a single original beam. Where more beams are desired, each beam is iteratively split using a cascading set of beam splitters. While the foregoing systems have proven useful in their applications, there is always room to improve upon the functionality, footprint and cost of such systems. The present invention meets these and a variety of other needs.
The present invention is directed to simplified and robust optical components for use in redirecting, deflecting and/or multiplexing optical systems, as well as to the systems that incorporate these components. The components of the invention typically comprise modular optical components (also referred to herein as “optical modules”) in the form of optical plates, prisms or combinations of these that serve to manipulate light without the need for excessively complicated systems of mirrors and lenses, and do so in a manner that prevents or minimizes optical aberrations.
In a preferred aspect, the invention provides an optical module. This optical module comprises a first optical component configured to redirect a beam of light passed there through. This first optical component has a first chromatic separation characteristic. The optical module in this aspect of the invention also comprises a second optical component adjacent the first optical component. The second optical component has a second chromatic separation characteristic that is complementary to the first chromatic separation characteristic, such that chromatic separation of the beam of light imparted by the first chromatic separation characteristic of the first optical component is substantially eliminated by the second chromatic separation characteristic of the second optical component.
In another aspect, the invention provides an optical system. In this aspect, the optical system comprises an illumination light source and an analytical substrate. The optical system also comprises an optical train configured to direct illumination light from the illumination light source to at least a first location on the analytical substrate. In this aspect, the optical train comprises a first optical component configured to redirect a beam of light from the illumination light source directed through the first optical component. The first optical component has a first chromatic separation characteristic. The optical train also comprises a second optical component adjacent the first optical component, and the second optical component has a second chromatic separation characteristic that is complementary to the first chromatic separation characteristic, such that chromatic separation of the beam of light imparted by the first chromatic separation characteristic of the first optical component is substantially eliminated by the second chromatic separation characteristic of the second optical component.
In still another aspect, the invention provides an optical module, which comprises a first variable reflective surface and a first mirrored surface spaced from and opposing the first variable reflective surface. In this aspect of the invention, when a first light beam is directed at a first position upon the first variable reflective surface, a portion of the light beam is reflected from the variable reflective surface to the mirrored surface and reflected back from the mirrored surface in a second beam to the variable reflective surface at a second position, and a portion of the first beam and second beams are transmitted through the variable reflective surface in first and second emanating beams. In this aspect of the invention, the first and second emanating beams are of substantially the same intensity.
In another aspect, the invention provides an optical system, which comprises an illumination light source and an analytical substrate. The optical system of this aspect of the invention also comprises an optical train configured to direct illumination light from the illumination light source to a plurality of locations on the analytical substrate. The optical train Comprises an optical module, and this optical module in turn comprises a first variable reflective surface and a first mirrored surface spaced from and opposing the first variable reflective surface. In this aspect of the invention, a first light beam from the illumination light source is directed at a first position upon the first variable reflective surface, a portion of the light beam is reflected from the variable reflective surface to the mirrored surface and reflected back from the mirrored surface in a second beam to the variable reflective surface at a second position, and a portion of the first beam and second beams are transmitted through the variable reflective surface in first and second emanating beams. The first and second emanating beams are of substantially the same intensity and are directed at the plurality of locations on the analytical substrate.
In yet another aspect, the invention provides a method of achromatically redirecting a path of a light beam. In this aspect, the method includes the step of directing the light beam through a first optical component that is configured to redirect the light beam by a first deflection angle to yield a first deflected light beam, wherein the first optical component has a first chromatic separation characteristic. This method also includes the step of directing the first deflected light beam through a second optical component adjacent the first optical component. The second optical component has a second chromatic separation characteristic that is complementary to the first chromatic separation characteristic, such that chromatic separation of the deflected light beam imparted by the first chromatic separation characteristic of the first optical component is substantially eliminated by the second chromatic separation characteristic of the second optical component, to yield a second deflected light beam.
In another aspect, the invention provides a method of multiplying a first light beam into a plurality of light beams. In this aspect, the method includes the step of directing the first light beam through a first optical component that comprises a first variable reflective surface and a first mirrored surface spaced from and opposing the first variable reflective surface. When the first light beam is directed at a first position upon the first variable reflective surface, a portion of the first light beam is reflected from the variable reflective surface to the mirrored surface and reflected back from the mirrored surface in a second beam to the variable reflective surface at a second position, and a portion of the first beam and second beams are transmitted through the variable reflective surface in first and second emanating beams. In this aspect of the invention, the first and second emanating beams are of substantially the same intensity.
The present invention is generally directed to simplified optical components and optical systems that include such simplified components. By incorporating such components into overall systems, advantages of cost, robustness and overall simplicity are achieved.
In particular, conventional optical components required to direct and manipulate light in optical systems can involve complex collections of potentially expensive precision optical components to accomplish seemingly minor goals. For example, in directing light beams, mirrors are typically used. Unfortunately, use of such mirrors typically either requires large angle deflections, or multiple serial mirrors precisely arranged, to accomplish minor angles of deflection. Such systems are therefore, either ineffective for certain goals, and/or potentially expensive, complex, and prone to misalignment.
The foregoing aspect of mirror based deflection systems is schematically illustrated in
Alternative systems have employed prisms as the light directing component. For example, narrow wedge prisms have also been used to achieve small angles of deflection, as shown in
The present invention, on the other hand provides simple optical components and/or optical systems that accomplish beam direction substantially without the foregoing disadvantages. In general, the invention relates to simple optical components, such as prisms or optical plates, that are used to effect beam deflection. By using simple optical components, the cost, complexity and space requirements of an optical train can be reduced. Further, in the present invention, such simple optical components are paired with complementary optical components, such as one or more additional prisms or plates, that substantially reverse or otherwise negate any of the foregoing dispersive effects of any individual prism or plate. By “complementary optical component” is meant that a second optical component will have properties of beam transmission that reverse, in part, substantially, or in whole, the undesired effects of a first optical component, such as color separation or differential deflection of beams of different spectra. Thus, where a first optical component introduces a level of spectral separation to a particular beam passed therethrough, a second, complementary optical element will typically at least partially, substantially, or entirely remedy the spectral separation to reintegrate the light beam. Typically, the remedying effects of the complementary component will be substantial, e.g., remedying at least 50%, preferably 75%, and more preferably at least 90% of dispersion, e.g., spectral separation, imparted by the first optical component.
As noted previously, in affecting the redirection of light beams, conventional optical systems typically employ one of two different schemes. First, where a large angle of deflection is possible in view of the space requirements of the overall system, simple mirrors may be employed to redirect light beams as desired. Where space requirements are more stringent and large angle deflections are not desired or not able to be accommodated, multiple mirrors are typically used to provide a smaller ultimate angle of deflection from the original beam.
While prisms have been used in deflection of beams at smaller angles, such prisms can impart spectral separation to the transmitted beam. Where one desires to deflect light achromatically, such separation is problematic. For example, even in conjunction with optical systems that desire to spectrally separate fluorescent optical signals, such systems may require or greatly benefit from the ability to deflect or redirect excitation or illumination light achromatically. As such, optical trains, including those described in Published U.S. Patent Application No. 2007-0036511, that employ separation optics to separate spectrally distinct signal components, may employ achromatic light direction components such as those described herein, for the direction of the excitation light beam(s) or the signal components either before or after spectral separation. As will be appreciated the optical components described herein are particularly useful in the applications described therein.
Accordingly, in at least one aspect, two or more transmissive optical elements are employed that each deflect the transmitted beams, but wherein the components provide complementary dispersive properties, e.g., resulting in substantially achromatic light transmission. A schematic illustration of this aspect of the invention is shown in
Provision of complementary prisms in accordance with the invention typically includes selection of appropriate prism materials, e.g., glasses, as well as selection of appropriate angles of deflection for each of the prisms, to accomplish the desired goal. Typically, the amount of wavelength dependent dispersion within a particular prism can be adjusted by selection of prisms comprised of appropriate materials and of appropriate surface angles and sizes.
In addition to adjusting the materials of one or both complementary prisms, one may also adjust the angle of deflection of the two prisms, such that any dispersive effects are minimized, but while also providing the desired deflection of the overall beam.
While illustrated in
One example of an achromatic prism configuration for affecting light displacement, as described above, is shown in
As an alternative to prisms, one may also employ flat plate optics in the redirection or deflection of beams. In particular, as shown in
As with the prisms described above, two or more glass plates may be provided with different, and complementary dispersive properties based upon their compositions and thicknesses. As shown, the beam 504 is again directed at the first glass plate 502. The beam also passes through complementary plate 512 which corrects for a portion or substantially all of any chromatic aberration imparted by plate 502, as indicated by arrow 514. Again, as with the prisms, above, a wide range of such optical glass plates may be obtained commercially from any number of commercial glass suppliers, including, e.g., Corning, Inc. (Corning, N.Y.), and/or Schott North America, Inc. (Elmsford, N.Y.). Depending upon the nature of beam translation and the level of complementarity desired for a given application, one can readily choose among available glass plates based upon the published properties of such plates.
In addition to beam deflection and translation applications, as described above, one may use simplified optical components to achieve other desirable goals for optical detection systems. For example, in a further aspect, the present invention provides a simplified optical component to split one original beam into two or more beams. In preferred aspects, the multiple resulting beams will have substantially similar spectral and intensity characteristics so that they may be applied in multiplexed detection systems, e.g., where uniformity of applied radiation would be desirable. By way of example, multiple beams may generally be desired where one is desirous of illuminating multiple different locations on a substrate, simultaneously. Examples of such applications include, e.g., fluorescence excitation and subsequent detection on biological array substrates, e.g., oligonucleotide arrays, illumination and detection within multiwell assay substrates, illumination and detection of assays carried out in zero mode waveguide arrays, and the like. A variety of other applications may be exploited using the inventions described herein, including, e.g., illumination and reading of printed code elements, e.g., bar codes, and the like.
In accordance with this aspect of the present invention, an optical plate is provided within the path of an illumination beam, and provided with a partially reflective surface coating so that it is able to pass a first portion of the light beam, while reflecting the second, remaining portion. Because the first plate is provided at an angle the second portion is reflected back in a direction orthogonal to the original beam. A second plate or other substrate having a mirrored surface is provided offset from the first plate so as to reflect the second portion of light back toward the surface of the first plate. As with the original beam, a portion of the second portion is passed through the partially reflective surface while the remaining portion is reflected back toward the mirrored surface. This iterative light path then results in multiple resulting beams from an original single beam. Further, by adjusting the angle of each plate relative to the perpendicular of the original beam and relative to each other, one can adjust the spacing between adjacent beams. Further, by adjusting the reflectivity of the semi-reflective surface, e.g., providing gradient of reflectivity over the surface of the first optical plate, one can adjust the intensity of each beam.
This aspect of the present invention is schematically illustrated in
As will be appreciated, by adjusting the spacing between the reflective surfaces, and/or the relative angle between the two surfaces, one can adjust the spacing between adjacent beams emanating from the beam splitting component. In addition to the foregoing, by providing the reflective coating on surface 606 with an appropriate reflective gradient along that surface, one can provide for an equivalent level of passed light with each separated beam. In particular, while a consistent reflective coating could provide for a 10% passage of applied beam, it will be appreciated that with each iteration, the resulting beam will be reduced in intensity, e.g., by 10%. However by adjusting the reflective coating to pass greater amounts of light as a function of position on the surface, e.g., moving down the surface, one can more readily control the light passage so that the resulting beam is of substantially the same intensity. Thus, in preferred aspects, the beam splitter of the invention will, as a result of the variable reflective coating and spacing between the mirrored surface and variable reflective surface, e.g., surfaces 612 and 606, yield a plurality of output beams that have substantially the same intensity as each other. By “substantially the same intensity” is meant that the output beams will typically have intensities that are within 10% of each other, preferably within 5% of each other, 1% of each other, or less. Such a system would not result from a system that employed a constant level of reflective coating. Although shown with mirrored layer 612 extending over the entire surface of plate 602, e.g., to the edge of the first plate 602, it will be appreciated that this mirrored layer may only cover a portion of plate 602, so as to provide a window in plate 602 through which the initial beam may pass, e.g., as shown in
As will be appreciated, the variable reflective coating may be configured to account for the angle at which the light beam is incident thereupon, e.g., accounting for additional thickness of the coating through which the transmitted beam must pass. As such, where the variably reflective surface is angled relative to the incoming beam, e.g., non-normal to that beam, a thinner coating layer may be provided to achieve the same effective reflectivity as a thicker coating with a normal beam. Additionally, one can conversely rotate the variably reflective surface to provide for the desired level of reflectivity, taking advantage of the increasing or decreasing nominal layer thickness (to the incident light beam) resulting from such rotation.
Variations in variable reflective layer thickness may also be accounted for or corrected by directing the initial beam at different locations on that surface. In particular, one may selectively direct the initial beam to portions of the variably reflective surface that are devoid of problematic aberrations, and that possess the desired level of reflectivity for the initial beam. In some cases, this adjustability may require adjustment of the initial window through which the beam is directed, e.g., window 712 in
In this aspect of the invention, additional functionalities may be provided by the first and/or second plate. For example, the first plate may comprise a cylindrical lens having a planar and partially reflective back surface, such that the beams emanating form the components are linearized. Likewise, other focusing, defocusing, translation, deflection, filtering or other functions may be provided by these elements simultaneous with the beam splitting function. In addition, these components may be provided along with additional optical components to provide light direction, separation, focusing, defocusing, linearization or other functions. For example, as noted previously herein, in the event one or more components yield any chromatic aberrations, additional components may be provided having complementary dispersive properties, to yield a substantially achromatic optical system or subsystem.
In addition to the foregoing, in some applications precise spacing between adjacent beams may be an important parameter. As such, in certain cases, the use of two separated plates may require extremely precise positioning of the two plates to precisely maintain their spacing, and as such, maintain the spacing of emitted beams. In particular, if spacing between the two plates, e.g., plates 602 and 614 in
Accordingly, in an alternative and simplified approach, one may provide both the semi-reflective coating or layer upon the same plate as the mirrored coating, so that the constant thickness of the glass provides the relevant spacing, e.g., the iterative reflections are carried out within a glass plate of substantially more uniform thickness. This aspect of the invention is illustrated in
In an alternative arrangement, the beam splitting plate may be incorporated into a single monolithic block, such that the angle of incidence of the original beam, and thus, the spacing of the emitted beams, may be predefined, requiring little adjustment in operation. Additionally, the original beam impinges upon the propagating medium, e.g., the monolithic block, at an angle that is substantially normal to the plane of the surface of the block, allowing one the ability to adjust both spacing and angle of the reflective surfaces during the manufacturing process without regard for any effects that might arise from the incident beam contacting the angled plate. This provides substantially greater flexibility in selection of spacing and angle while also providing ease of manufacturing. A schematic illustration of this aspect of the invention is shown in
The optical components described above are typically incorporated into systems and subsystems that will generally include illumination systems or light sources. In preferred aspects, the light sources typically include one or more light sources directed through the optical components described herein, optionally before or after being directed through additional optical components. In particular, in addition to light sources, the systems of the invention typically include additional light direction and manipulation components such as lenses, mirrors, prisms and/or plates, e.g., as described above, filters, and the like. In addition, such systems, when used in the optical analysis of materials, reactions, or other processes, will include observed components which may include reaction wells, substrate surfaces including materials of interest or otherwise. Such systems will also typically include signal collection and manipulation optics as well as detectors, and data storage and processing components, such as a computer.
One example of a system employing a beam splitter of the invention in the context of a fluorescence based assay system is illustrated in
As will be appreciated, the optical modules of the invention may be employed alone or in combination with the various embodiments described herein. In particular, the optical modules are preferably employed as one or more optical components in an optical train in an analytical optical system, such as a fluorescent signal detection system, where these components are preferably employed in the illumination path of such fluorescent detection systems. In particular, these components are preferably employed in directing excitation light from an excitation light source, such as a laser or other appropriate source, to one or more discrete locations (also referred to herein as “analytical regions”) on the surface of an analytical substrate, which locations include sources of fluorescent signals, e.g., as described in the applications noted elsewhere herein.
Likewise, the use of these optical modules is also encompassed in the invention. In particular, the optical modules may be employed in methods of directing individual or multiple light beams at analytical substrates, as described elsewhere herein.
As noted previously, the optical components and systems of the invention are particularly useful in analyzing materials, reactions or otherwise that rely upon illumination of same. In particular, these systems are useful in illuminating large areas of substrates or materials in order to generate fluorescent responses. Of particular interest are analyses of chemical, biochemical and biological reactions that are carried out in discrete locations of substrates, multiwell plates, arrays or the like. Such analyses include molecular interactions, enzymatic reactions, analyte quantitation, and the like, such as are described in, e.g., U.S. Pat. Nos. 7,056,661, 7,052,847, 7,033,764, 7,056,676, and in nucleic acid arrays as described in U.S. Pat. Nos. 5,143,854, 5,405,783 and related patents, and GeneChip® systems from Affymetrix, Inc., as well as for use in conjunction with microfluidic analytical systems such as are available from Caliper Life Sciences and Agilent Technologies. All of the foregoing patents are incorporated herein by reference in their entirety for all purposes.
Although described in some detail for purposes of illustration, it will be readily appreciated that a number of variations known or appreciated by those of skill in the art may be practiced within the scope of present invention. To the extent not already expressly incorporated herein, all published references and patent documents referred to in this disclosure are incorporated herein by reference in their entirety for all purposes
This application claims priority to Provisional U.S. Patent Application No. 60/847,867, filed on Sep. 28, 2006, the full disclosure of which is incorporated herein by reference in its entirety for all purposes.
Number | Date | Country | |
---|---|---|---|
60847867 | Sep 2006 | US |