Pallet lifts or pallet jacks are used to move pallets loaded with goods around a warehouse, store and/or in and out of trucks. Larger lifts can be used to move more pallets at one time; however, sometimes the larger lifts are too wide to be used in some applications. Some pallet jacks have long handles that pivot from a bottom rear edge of the base of the jack. The long handle can also make maneuvering in tight spaces more difficult.
A lift for a fork tine assembly includes a generally upright frame having at least one handle grip portion at a rearward portion thereof. The handle grip portion is fixed relative to the frame. A lift mechanism is secured to the frame. The lift mechanism is capable of attaching to and raising and lowering at least one fork tine. A plurality of wheels support the frame. The at least one fork tine may be part of a first fork tine assembly that can be selectively removed from the lift and replaced with a different configuration fork tine assembly. An optional shelf is provided on the frame for convenience but may be pivoted out of the way when not in use.
A modular pallet jack or lift assembly 10 generally includes a lift 12 and a fork tine assembly 14. The lift 12 includes a frame 16 with upright handles 18. Other handle arrangements could also be used, but the upright handles 18 shown reduce the footprint of the lift assembly 10 and increase the maneuverability of the lift assembly 10 in tight spaces.
An actuator lever 20 proximate one of the handles 18 permits the operator to activate the lift 12. Wheels 22 are mounted below the frame 16.
The fork tine assembly 14 includes a support structure 24 having a connection beam 26 projecting rearward therefrom. The support structure 24 connects to the fork tines 28. The tines 28 are supported by pivoting wheels 30 (as is known). The tines 28 may have upper and lower portions connected in a known linkage arrangement. The lift 12 selectively lifts the connection beam 26, thereby lifting the upper portions of the tines 28 relative to lower portions of the tines 28 and causing the wheels 30 to pivot downward. The fork tine assembly 14 is also connected by bolts 34 to lower ends of the frame 16 of the lift 12.
The modular lift assembly 10 permits the lift 12 to be connected with any of a plurality of fork tine assemblies 14, 14a, 14b, as shown in
At least one vertically extending reinforcement member 120 extends from the frame portion 116 and at least partially through the upper portion 118. The upper portion 118 includes a shelf 122 that is movable between a stowed position (
The shelf 122 is pivotably attached to the upper portion 118 by hinges 130. The hinges 130 secure the shelf 122 in the vertical stowed position and allow the shelf 122 to move to the deployed position. As shown in
The shelf 122 is moved from the stowed position to the deployed position by lifting up on the shelf 122 as shown in
A deployment arm 136 connects the shelf 122 to the upper portion 118 to maintain the shelf 122 in a generally horizontal configuration. The deployment arm 136 includes a first link 136A and a second link 136B. A first end of the first link 136A is pivotably attached to the shelf 122 and a first end of the second link 136B is pivotably and slidably attached to the upper portion 118 by a bracket 138. Second ends of the first and second link 136A, 136B are pivotably attached to each other. The bracket 138 includes a slot 140 for accepting a pin 142 located on the first end of the link 136B. The slot 140 allows the pin 142 and deployment arm 136 to move upward when the shelf 122 is moved in a vertical plane into and out of the stowed position. Although only a single deployment arm 136 and bracket 138 is shown, a second deployment arm 136 and bracket 138 could be located on the opposite side of the shelf 122.
In accordance with the provisions of the patent statutes and jurisprudence, exemplary configurations described above are considered to represent a preferred embodiment of the invention. However, it should be noted that the invention can be practiced otherwise than as specifically illustrated and described without departing from its spirit or scope.
Number | Name | Date | Kind |
---|---|---|---|
7114906 | Baumgarner et al. | Oct 2006 | B1 |
7824144 | Wilson | Nov 2010 | B2 |
7856932 | Stahl et al. | Dec 2010 | B2 |
7987797 | Stahl et al. | Aug 2011 | B2 |
7988405 | Ellington | Aug 2011 | B2 |
8011677 | Ellington et al. | Sep 2011 | B1 |
8075244 | Ellington | Dec 2011 | B2 |
8282111 | Hailston et al. | Oct 2012 | B2 |
8360443 | Ellington | Jan 2013 | B2 |
8776697 | O'Connell | Jul 2014 | B1 |
8894076 | Hailston et al. | Nov 2014 | B2 |
8950759 | Thorsen et al. | Feb 2015 | B2 |
9260125 | Ellington et al. | Feb 2016 | B2 |
9340401 | Takeuchi | May 2016 | B2 |
9403547 | Ellington | Aug 2016 | B2 |
9611071 | Baltz et al. | Apr 2017 | B2 |
9809434 | Magoto | Nov 2017 | B2 |
20060231301 | Rose | Oct 2006 | A1 |
20090183953 | Ellington | Jul 2009 | A1 |
20090185890 | Ellington | Jul 2009 | A1 |
20100295261 | Ellington | Nov 2010 | A1 |
20110171000 | Hailston | Jul 2011 | A1 |
20130202400 | Richard et al. | Aug 2013 | A1 |
20130223962 | Ellington et al. | Aug 2013 | A1 |
20150225215 | King et al. | Aug 2015 | A1 |
20160368747 | O'Connell | Dec 2016 | A1 |
20170297881 | King et al. | Oct 2017 | A1 |
20170341667 | Kalinowski et al. | Nov 2017 | A1 |
Entry |
---|
U.S. Appl. No. 15/639,266, filed Jun. 30, 2017. |
U.S. Appl. No. 15/788,967, filed Oct. 20, 2017. |
U.S. Appl. No. 15/606,598, filed May 26, 2017. |
Number | Date | Country | |
---|---|---|---|
20170240194 A1 | Aug 2017 | US |
Number | Date | Country | |
---|---|---|---|
62457539 | Feb 2017 | US | |
62298395 | Feb 2016 | US |