Not applicable.
1. Field of the Invention
The present invention relates to gardens grown on elevated rooftop surfaces and, more specifically, to a modular planting and irrigation device and system for growing horticultural plants that conserve water, store irrigation water, and provide air to the root zone of plants.
2. Description of the Related Art
One form of gardening growing in popularity involves growing a garden on the rooftop of a building, which has several widely-accepted benefits. For example, by utilizing rooftop spaces in and around heavily populated urban and/or suburban areas, the absorption of carbon dioxide emitted by cars and power plants typically utilized around such areas can be significantly increased. In addition, rooftop gardens absorb rainwater that would otherwise run off roofs and over concrete and asphalt surfaces used for driving, thereby picking up oil and other contaminants that potentially lead to downstream pollution. Moreover, rooftop gardens help keep the underlying structure cooler and help extend the life of the roof by blocking harmful ultraviolet rays. And, of course, rooftop gardens help to beautify areas that would otherwise lack greenery because of space limitations, such as downtown regions of cities.
While rooftop gardening provides a very compelling list of benefits, it is also problematic with regard to installation and maintenance. For example, rooftop gardens utilizing soil as a growth medium must provide for drainage as non-drained soil loses all of the air in its pore space, thus causing the plants to rot in the resulting anaerobic conditions. The requirement for drainage means that rooftop gardens must be watered frequently—perhaps as often as twice per day depending on growing conditions and the limited amount of soil that can be located on rooftops. Moreover, a typical rooftop garden must have an additional infrastructure to insure that any water which exceeds the field capacity of the soil is removed.
Another problem with rooftop gardens relates to limitations on the amount of soil that can be used. A typical rooftop garden is up to approximately twenty-four inches deep and is made up of soil, drainage layers, and various structural elements. This depth provides less than one half cubic foot of soil per square foot, which is a volume-to-area ratio capable of containing very little water to support plant life. While the depth of the soil can be increased to retain a larger amount of water, adding additional soil makes weight an issue: Wet soil can weigh up to two hundred fifty pounds per square foot, but the roofs of most buildings are not designed to support such a load, and reinforcing the roof is usually not economically feasible.
The frequent watering limitation, weight limits, and drainage requirements have greatly limited the installation of “green roofs” due to the expense of addressing these issues and the time required to install these systems and additional infrastructure. There have, however, been attempts to make installation easier and more cost effective.
For example, one such approach includes use of a drained plastic pan that is filled with a combination of rocks and light soil. According to this method, the plastic pan is pre-planted with plants that have the ability to survive low water conditions, such as sedums. While this approach does generally cut down installation time and lessen the load on the underlying roof, this technique still typically exceeds the standard load for a roof and requires extensive drainage. In addition, these plants provide less than optimal transpiration, which translates to less carbon absorption and cooling effect compared to other types of plants.
It is therefore desirable to overcome the above-described limitations of current rooftop gardening devices and systems while providing a plentiful supply of air to the roots of plants with no drainage in a comparatively lightweight material.
The present invention is a modular planting and irrigation device and system that includes a body of porous material. Suitable porous materials include polyether polyurethane foam material, bonded crumb rubber with a polyurethane binder, or any material with the properties and ability to trap air and allow roots to grow through the material. The porous material allows movement of irrigation water through the body while trapping air in the pore spaces. The trapped air is then available to the root system of the plants that will grow within the material.
Although preferably a single piece of porous material, the body of porous material may be multiple pieces of porous material placed laterally and/or vertically adjacent to one another. For example, the body of porous material may include multiple laterally adjacent pieces of porous material. Alternatively, the body of porous material may be multiple vertically adjacent pieces of porous material, such that a first layer is placed atop one or more additional layers.
Moreover, a plurality of modular planting and irrigation devices as described herein may be combined into a system of modular planting and irrigation devices by locating the plurality of devices on a surface, such as a rooftop, in a predetermined configuration. Each of the plurality of devices is then interconnected, and the plurality is connected, to a water source using distribution piping.
The device preferably comprises a water-impermeable barrier adjacent the sides and bottom of the body of porous material. The barrier can be a polyethylene plastic liner, spray on waterproofing material, or any other suitable moisture barrier on the bottom and sides of the body. In one embodiment, the fluid inlet for the body is the top surface of the body which can be exposed to water in any traditional manner, such as hand watering with a hose and spray attachment. In alternative embodiment of the present invention, the fluid inlet can be a non-flow controlled inlet, a flow regulating device, or any means to allow water to enter the body.
One embodiment of the present invention is assembled as follows. First, a body of open cell reticulated polyether polyurethane foam material is surrounded on the sides and bottom by a water impermeable barrier and placed on a rooftop. The body is approximately two inches deep. A fluid inlet is attached through the water impermeable barrier. One or more slits are positioned in the top surface of the body, and the roots and/or root balls of selected plants are positioned in the slits. After planting, the material is irrigated, such as by filling the body to the top of the barrier or by connecting the fluid inlet to a water source. In addition to the foregoing description, the reader is referred to U.S. patent application Ser. No. 12/417,259, filed Apr. 2, 2009 and incorporated by reference herein, which describes similar application of a body of porous material used with hanging baskets.
The present invention provides at least the following advantages over other rooftop gardening systems. There is no requirement for drainage, as there is no drainage when watering the system. The present invention retains the maximum amount of water possible, with no waste created by overflow zones and drainage mechanisms. The body of porous material evenly retains air throughout, making air available to plant roots growing therethrough. The pore sizes of the porous material are such that the roots of the plants easily grow therein. The present invention is lightweight and requires minimal or no roof reinforcement. Therefore, the system can be installed without the use of heavy equipment. Finally, a larger variety of transpiration plants may be used.
Although this invention has been described in connection with rooftop planting and gardening, it can readily be seen that this invention can be used in many applications and on many surfaces providing the same advantages. For example, the invention can be used on a ground surface such as landscaped gardens or it can be used for hanging baskets or virtually any surface where growth of plants is desired.
The present invention provides a modular planting and irrigation device 20 for plants that maintains air within the plants' rooting area with no need for drainage.
In the preferred embodiment, the body of porous material 24 is in the shape of a flat panel or layer having a height or depth of approximately two inches. However, it is anticipated that the height or depth could vary, depending on the type of plants to be planted. The length and width of the body 24 will vary with the size and shape of the surface area on which the plants are to be located, such as the available surface area of a rooftop 22.
Referring specifically to
Referring to
In the preferred embodiment, when filled with water, the body of porous material 24 and barrier 20 together typically weighs less than ten pounds per square foot, which allows it to be installed on existing and new building rooftops, vertical walls, fencing, lattice, or other structures with no additional structural support systems required. In addition, the lightweight nature of the device 20 allows installation in a variety of orientations, such as vertically.
Referring again to
Although preferably a single piece of porous material, the body of porous material 24 may be multiple pieces of porous material placed laterally and/or vertically adjacent to one another. For example, the body of porous material 24 may include multiple laterally adjacent pieces of porous material.
Alternatively, the body of porous material may be multiple vertically adjacent pieces of porous material, such that a first layer is placed atop a second layer. For example,
In this embodiment, the plant receiving openings 58 typically range in diameter from two inches to twelve inches in order to accommodate various diameter bedding and landscape plants, but may be sized as needed to secure the desired plants in the second layer 56. For example, the plant receiving openings 58 may be slits as discussed in the preferred embodiment.
In another alternate embodiment, a layer of water absorbing polymer gel 70 can be located between the first and second layers 54, 56 of the embodiment shown in
The embodiments described herein include plant receiving openings, such as the slits 26, formed partially through the depth of the body of porous material. In alternative embodiments, the depth of the plant receiving openings may vary according to the size of the roots or root ball to be inserted. For example, for large roots or root balls, the plant receiving opening may be formed completely through the body of porous material 24. Other embodiments may not have any plant receiving openings. In these embodiments, roots or root balls of plants, such as those sharing geotropic roots (i.e., roots that grow downward and in response to gravity) may be placed on the top surface 27 of the body of porous material 24 without forming a plant receiving opening, after which the roots will grow downwardly into the body.
The present invention is described in terms of preferred embodiments in which a specific system and method are described. Those skilled in the art will recognize that alternative embodiments of such system, and alternative applications of the method, can be used in carrying out the present invention. Other aspects and advantages of the present invention may be obtained from a study of this disclosure and the drawings, along with the appended claims. Moreover, the recited order of the steps of the method described herein is not meant to limit the order in which those steps may be performed.
This original, nonprovisional application is a continuation-in-part application that claims the benefit of U.S. application Ser. No. 11/998,119 filed Nov. 28, 2007, which is in turn a continuation-in-part application of U.S. application Ser. No. 10/600,625 filed Jun. 20, 2003 (now U.S. Pat. No. 7,407,340), which in turn claims the benefit of U.S. Provisional Application Ser. No. 60/390,097 filed Jun. 20, 2002 (now abandoned). This application also claims the benefit of U.S. Provisional Application Ser. No. 61/302,480, filed on Feb. 8, 2010 and entitled Modular Gardening System and Method. Each of the above-referenced applications and patents are incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
60390097 | Jun 2002 | US | |
61302480 | Feb 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11998119 | Nov 2007 | US |
Child | 12859395 | US | |
Parent | 10600625 | Jun 2003 | US |
Child | 11998119 | US |