This disclosure relates to pontoon-style boats, and in particular, to a modular pontoon boat that is easily transported and assembled or disassembled.
Boaters use pontoon boats to transport one or more people on a body of water. Pontoon-style boats typically include one or more large pontoons that extend in the principle direction of movement of the boat. Due to the size and shape of typical pontoons, pontoon boats are often difficult to store and transport. For example, boaters usually transport a pontoon boat to and from a body of water on a large trailer coupled to a specialized towing vehicle that has sufficient towing power to pull the trailer and pontoon boat. Once the towing vehicle arrives at the body of water, the boater must find a marina with a suitable unloading area, typically consisting of a large boat ramp that extends into the body of water. Once the boater has located a suitable marina, the driver of the towing vehicle maneuvers the towing vehicle such that a back end of the trailer faces the body of water. The driver then moves the vehicle and trailer in reverse until the boat and the trailer are at least partially submerged in the body of water. The driver then releases the boat from the trailer and a person on the pontoon boat maneuvers the boat away from the trailer. The driver of the towing vehicle must then find a suitable location to store the towing vehicle and the trailer while the pontoon boat is in use.
When use of the boat is terminated, the drive must retrieve the towing vehicle and the maneuver the towing vehicle and trailer to retrieve the boat from the body of water by repeating the steps outlined above in the reverse order. As such, the driver maneuvers the towing vehicle and trailer until the back end of the trailer faces the body of water. The driver then moves the towing vehicle until the trailer is at least partially submersed and the boat can be loaded onto the partially-submerged trailer. The towing vehicle then removes the trailer and pontoon boat from the water and the driver secures the pontoon boat to the trailer for the journey to a boat storage facility. As such, transporting, loading, unloading and storing a pontoon boat is often expensive and time consuming.
In some cases, the pontoon boat is stored at a marina where the boat is docked in the water or raised out of the water. However, this method of storing a pontoon boat is also expensive because pontoon boats require large docks with specialized docking equipment due to the size and shape of the pontoons.
During the off-season, or during other periods of time in which the pontoon boat is not in use, the pontoon boat must be stored. Due to the size and unusual hull shape of typical pontoon boats, boaters often store pontoon boats in outdoor locations, thus exposing the boat to environmental factors which increase the rate at which the boat deteriorates. When indoor storage facilities of sufficient size to hold a pontoon boat are available, those storage facilities tend to be very expensive to lease or own.
What is needed is a pontoon boat that is easy to load, unload, store and transport, while still providing a pontoon-style watercraft for people to enjoy on a body of water.
In a first aspect, there is provided a modular boat that includes a first pontoon, a second pontoon, an arched coupling member, a deck frame, a deck surface and at least one inflatable seat. The first pontoon has a first longitudinal axis and the second pontoon has a second longitudinal axis. The arched coupling member is removably coupleable to the first pontoon and the second pontoon so that the arched coupling is perpendicular to the first and second longitudinal axis. The deck frame is removably coupleable to the arched coupling member. The deck surface is removably coupleable to the deck frame and extends in a first plane that is parallel to a second plane that contains the first and second longitudinal axis. The inflatable seat is removably coupleable to the deck surface.
In some embodiments, the arched coupling member has a width between a first end and a second end of the arched coupling, and a height between a mid-point of the coupling and the first and second ends of the coupling. In some embodiments, the height of the arched coupling is about half of the width of the coupling.
In other embodiments, the arched coupling includes a motor mount at a midpoint of the arched coupling.
In still other embodiments, the motor mount extends from the midpoint toward a water surface when the boat is on a body of water.
In yet other embodiments, the boat includes a first vertical support member and a second vertical support member. In some embodiments, the first vertical support member is removably coupleable to the first pontoon and the deck frame, and the second vertical support member is removably coupleable to the second pontoon and the deck frame.
In another embodiment, the boat includes an inflatable roof frame that is removably coupleable to one or more of the deck frame and the deck surface.
In still another embodiment, the boat includes a flexible roof material that is removably coupleable to the inflatable roof frame. In some embodiments, the roof material includes one or more retractable window coverings.
In yet another embodiment, the first pontoon includes a first protective plate coupled to a bottom surface of the first pontoon and the second pontoon includes a second protective plate coupled to a bottom surface of the second pontoon.
In some embodiments, the deck surface includes a plurality of rigid, interlocking deck pieces.
In other embodiments, the deck surface includes an inflatable surface.
In a second aspect, there is provided a partially-inflatable, modular pontoon-style boat that includes a first pontoon and a second pontoon; a rigid deck frame that is coupled to the first pontoon and the second pontoon; a deck material that is coupled to the deck frame to provide a deck surface; an inflatable seat that is coupled to the deck surface; an inflatable roof frame that is coupled to the deck surface; and one or more window coverings coupled to the inflatable roof frame.
In some embodiments, the boat includes a first steering rudder coupled to a back end of the first pontoon and a second steering rudder coupled to a back end of the second pontoon.
In other embodiments, a steering cable is operably coupled between a steering device and the first and second steering rudders.
In some embodiments, the first and second pontoons are inflatable.
In another embodiment, the boat includes an inflatable wall that extends along at least part of a perimeter of the deck surface.
In yet another embodiment, the rigid deck frame is coupleable to the first and second pontoons by way of a plurality of arched coupling members.
In still another embodiment, a third pontoon is positioned between the first and second pontoons. In some embodiments, the third pontoon is shorter than the first and second pontoons.
In a third aspect, there is provided a method of assembling a modular pontoon-style boat. The method includes positioning a first pontoon parallel to a second pontoon and coupling a first end of an arched coupling to the first pontoon and a second end of the arched coupling to the second pontoon. The method also includes coupling a deck frame to the arched coupling and coupling a deck material to the deck frame to create a deck surface. The method also includes inflating a wall and coupling the wall to at least part of a perimeter of the deck surface.
In some embodiments, the method includes coupling a motor to a motor mount located at a midpoint of the arched coupling.
In other embodiments, the method includes inflating a roof frame and coupling the roof frame to the deck surface.
Other aspects, features, and advantages will become apparent from the following detailed description when taken in conjunction with the accompanying drawings, which are part of this disclosure and which illustrate, by way of example, principles of the inventions disclosed.
The accompanying drawings facilitate an understanding of the various embodiments. The drawings are not to scale and show only some embodiments. Other embodiments that are not specifically illustrated are within the scope of this disclosure. Embodiments shown in one figure may be combined with embodiments shown in other figures to create further embodiments.
As described in more detail below, the above-described components of the boat 100 are modular and can be disassembled to allow for compact storage and transport of the boat 100. For example, in some embodiments the boat 100 is transported to a body of water in a disassembled state and then assembled on-site at the body of water. In some embodiments, the modular components of the boat 100 are made of lightweight materials so that a user can easily launched from the shore into the body of water without the need for a boat ramp. In addition, the light weight, modular components can be stored and transported in the disassembled state without the need for a specialized trailer and towing vehicle. In some embodiments, for example, the pontoon boat 100 can be disassembled and/or deflated to fit within a small storage space, such as the bed of a pickup truck, for storage between uses.
In some embodiments, the first and second pontoons 102 and 104 include a rigid outer surface filled with a buoyant material, such as a buoyant foam. In some embodiments, the pontoons 102 and 104 are made of a metal material, such as stainless steel, while in other embodiments the pontoons 102 and 104 are made of other rigid materials, such as reinforced plastic materials. In other embodiments, the first and second pontoons 102 and 104 include a flexible outer surface and are inflatable.
While the pontoons 102 and 104 illustrated in the embodiment of
In some embodiments, the pontoons 102 and 104 include one or more reinforcing plates (not shown) located on an interior or exterior surface of the bottom surface 126 of the pontoons 102 and 104. In some embodiments, the reinforcing plates extend substantially the entire distance from the front end 122 to the back end 124 of the pontoons 102 and 104 and protect the bottom surface 126 of the pontoons 102 and 104 while a user loads or transports the boat 100 by dragging the pontoons 102 and 104 on a ground surface. Thus, a user can assemble the pontoon boat 100 on the ground at or near a shoreline of a body of water and then transport the boat 100 to the body of water by dragging the boat 100 without damaging the pontoons 102 and 104.
The pontoons 102 and 104 are removably coupled to the deck frame 108 by one or more arched coupling members 106. The arched coupling members 106 are generally in the form of an arch and include a first end 128 that is removably coupled to the first pontoon 102 and the second end 130 that is removably coupled to the second pontoon 104. In some embodiments, a midpoint of the arched coupling members 106 is removably coupled to the deck frame 108 to secure the first and second pontoons 104 to the deck frame 108. In some embodiments, the arched coupling members 106 are made from one-inch diameter aluminum piping. While three arched coupling members 106 are illustrated in the embodiment of
In some embodiments, the arched coupling members 106 have a height that is approximately half the distance of the width of the arched coupling members 106. In some embodiment, for example, the arched coupling members 106 have a height of about 5 feet and a width of about 10 feet and are coupled to pontoons 102 and 104 that have a length of about 17 feet. In some embodiments, the arched coupling members 106 provide for sufficient space under the deck frame 108 for users to swim, store items, or otherwise use the vacant space. In some embodiments, for example, the arched coupling members are between about 3 and about 8 feet in height and between about 6 and about 18 feet wide so that a typical kayak or canoe can be placed beneath the boat 100 (see, e.g.,
In some embodiments, the arched coupling members 106 are a single, unitary piece while in other embodiments the arched coupling members 106 include multiple arched pieces. In some embodiments, the arched coupling members 106 are semi-circular in shape while in other embodiments the arched coupling members 106 have another suitable shape to provide for extra space below the boat 100, such as a semi-elliptical shape or other curved shape.
In some embodiments, the first and second pontoons 104 are also removably secured to the deck frame 108 by vertical support members 110. In some embodiments, the vertical support members 110 are coupleable to the first and second pontoons 102 and 104 at a location adjacent to the connection between the arched coupling members 106 and the pontoons 102 and 104. Thus, in some embodiments a first vertical support member 110 is positioned adjacent to a first end 128 of each arched coupling member 106 and a second vertical support member 110 is positioned adjacent to the second end 130 of each arched coupling member 106, as illustrated in
Referring now to
Any suitable motor 134 can be coupled to the motor mount 132. In some embodiments, the motor 134 is an electric motor 134. In other embodiments, the motor 134 is a gasoline-powered motor 134. In some embodiments, a gas tank (not shown) is also coupled to the motor mount 132. In other embodiments, a gas tank is located in another location on the boat 100, such as a designated area on the deck surface 112.
Referring now to
Referring now to
Referring now to
The deck frame 108 may also include one or more central lateral members 156 that extend from the front member 148 to the rear member 150. In some embodiments, the deck frame 108 also includes additional support members 180 located above each arched coupling member 106. In the embodiment illustrated in
Referring now to
In some embodiments, the boat 100 includes one or more inflatable walls 118 positioned along a peripheral edge of the deck surface 112. In some embodiments, the walls 118 are coupled to one or more of the deck surface 112 and the deck frame 108. In some embodiments, the walls 118 are inflatable such that the walls 118 can be deflated and stored in a compact configuration when the boat 100 is not in use. The inflatable walls 118 can be made of any suitable material that is substantially air-impermeable and can be formed into an inflatable shape, such as, for example, PVC-coated vinyl. In some embodiments, the walls 118 extend around the entire peripheral edge of the deck surface 112 while in other embodiments the walls 118 extend around only part of the peripheral edge of the deck surface 112, as shown in the embodiment illustrated in
Referring now to
Referring now to
In some embodiments, the roof frame 114 includes a roof material 116 that covers at least a portion of the roof frame 114. In some embodiments, for example, the roof material 116 covers an upper portion of the roof frame 114, as well as a portion of the sides of the roof frame 114. In some embodiments, the roof material 116 includes one or more window openings 166 and window coverings 168 adjacent to the window openings 116. In some embodiments, the window coverings 168 are made of a flexible material that can be retracted or rolled so that the window openings 116 are uncovered. For example, in some embodiments, the window coverings 168 are rollable and a user can tie the rolled window coverings with a suitable tying mechanism 170 to retain the window coverings 168 in the rolled position.
Referring specifically to
Referring now to
Referring now to
In other embodiments, the boat 100 can include any number of full-sized pontoons 102, 104. For example, in the embodiment illustrated in
In some embodiments, at least some of the modular components of the boat 100 are coupled together using a peg system 200. For example,
Referring now to
In use, a user transports the boat 100 in the disassembled state to a body of water. The user then assembles the boat 100 at or near the body of water and then pushes the boat 100 into the water. In some embodiments, the assembled boat 100 is sufficiently light to be pushed/pulled by one or more people. In other embodiments, the assembled boat 100 is moved into and out of the water with the assistance of a pulling mechanisms, such as a mechanical winch.
When the user has finished using the boat 100, the boat 100 can be removed from the body of water by pulling the boat 100 onto the shoreline. Once the boat 100 has been removed from the body of water, the user can completely or partially disassemble the boat 100 for compact storage. For example, in some embodiments the inflatable components of the boat 100, such as the seats 120 and the roof frame 114 in some embodiments, are deflated and the boat 100 is stored. In other embodiments, the inflatable components of the boat 100 are deflated and the other components of the boat 100, such as the deck frame 108 in some embodiments, are disassembled so that the components of the boat 100 can be stored more compactly.
Referring now to
Referring now to
Referring now to
The foregoing describes only some embodiments of the invention(s), and alterations, modifications, additions and/or changes can be made thereto without departing from the scope and spirit of the disclosed embodiments, the embodiments being illustrative and not restrictive. For example, in other embodiments, other types of coupling mechanisms are used to removably couple the components of the boat 100. For example, in some embodiments, the components are coupled using bolts and nuts rather than, or in addition to, the peg 182 and slot 184 configuration described above. In addition, while certain components have been described as being inflatable, such as the seats 120, the wall 118 and the roof frame 114, in other embodiments those parts are made of rigid materials such as aluminum or hard plastic materials. Similarly, components that have been described as being rigid, such as the deck frame 108, are inflatable in some embodiments. In some embodiments, the components of the boat 100, such as the pontoons 102 and 104, the arched coupling members 106, the vertical support members 110, the deck frame 108, the deck surface 112, the roof frame 114 and the roof material 116, are made of lightweight materials so that the boat 100 weighs between about 875 lbs. and about 1250 lbs. pounds when fully assembled. In other embodiments, the boat 100 weighs between about 675 lbs. and about 2500 lbs. In other embodiments, the boat 100 weights less than about 675 lbs. while in other embodiments the boat 100 weights more than about 2500 lbs. In some embodiments, the components of the boat 100, when disassembled, fit within a bed of a pickup truck. For example, in some embodiments, the components of the boat 100 fit within a four foot by eight foot bed of a pickup truck. In some embodiments, the deck material 112 is made of a trampoline material and the deck is spring loaded. In some embodiments, the inflatable components are inflated using a hand pump or an electronic air pump. In some embodiments, the shape of the roof frame 114 is customized to resemble the shape of an object, such as, by way of non-limiting example, a pirate ship, a car, a tractor, a train, or a castle. In some embodiments, additional features, such as inflatable slides, can be coupled to the roof frame 114 or other parts of the boat 100. In some embodiments, the inflatable seats 120 have a hollow cavity to house items. In some embodiments, for example, the hollow cavities in the seats 120 act as coolers for holding drinks and food. In some embodiments, inflatable bumpers are coupleable to the components that are made of hard materials, such as the deck frame 108 in some embodiments, to protect users of the boat 100.
In the foregoing description of certain embodiments, specific terminology has been resorted to for the sake of clarity. However, the disclosure is not intended to be limited to the specific terms so selected, and it is to be understood that each specific term includes other technical equivalents which operate in a similar manner to accomplish a similar technical purpose. Terms such as “left” and right”, “front” and “rear”, “above” and “below” and the like are used as words of convenience to provide reference points and are not to be construed as limiting terms.
In this specification, the word “comprising” is to be understood in its “open” sense, that is, in the sense of “including”, and thus not limited to its “closed” sense, that is the sense of “consisting only of”. A corresponding meaning is to be attributed to the corresponding words “comprise”, “comprised” and “comprises” where they appear.
Furthermore, invention(s) have been described in connection with what are presently considered to be the most practical and preferred embodiments and it is to be understood that the invention is not to be limited to the disclosed embodiments, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the invention(s). Also, the various embodiments described above may be implemented in conjunction with other embodiments, e.g., aspects of one embodiment may be combined with aspects of another embodiment to realize yet other embodiments. Further, each independent feature or component of any given assembly may constitute an additional embodiment.
This application claims priority to U.S. Provisional Patent Application No. 62/040,900, filed Aug. 22, 2014, entitled “Modular Pontoon Boat,” which is hereby incorporated herein by reference in its entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
2908919 | Bicknell et al. | Oct 1959 | A |
3092854 | Manhart | Jun 1963 | A |
3785317 | Currey | Jan 1974 | A |
4082053 | Woodward | Apr 1978 | A |
4557210 | Gerwin | Dec 1985 | A |
4562786 | Pruonto | Jan 1986 | A |
4601667 | Hull | Jul 1986 | A |
4766830 | Kunz | Aug 1988 | A |
4766918 | Odekirk | Aug 1988 | A |
4813366 | Elder | Mar 1989 | A |
4915047 | Lord et al. | Apr 1990 | A |
4919632 | Smith et al. | Apr 1990 | A |
5237954 | Evans | Aug 1993 | A |
5564955 | Ingraham | Oct 1996 | A |
5575231 | Metcalf | Nov 1996 | A |
5878688 | Merrett et al. | Mar 1999 | A |
6148754 | Sims, Jr. | Nov 2000 | A |
6526904 | Liston et al. | Mar 2003 | B2 |
6623322 | Lesniak | Sep 2003 | B1 |
D505908 | Swenson et al. | Jun 2005 | S |
6929016 | Lee | Aug 2005 | B2 |
D556668 | Quinn | Dec 2007 | S |
8656856 | Morrow | Feb 2014 | B1 |
20040035344 | Metzger et al. | Feb 2004 | A1 |
20040159275 | Broderick et al. | Aug 2004 | A1 |
20070131155 | Dingel | Jun 2007 | A1 |
20070295255 | Stryjewski | Dec 2007 | A1 |
Number | Date | Country |
---|---|---|
2411425 | Sep 1975 | DE |
2387145 | May 2004 | GB |
WO-2010060161 | Jun 2010 | WO |
Entry |
---|
International Search Report and Written Opinion for Co-Pending PCT Application No. PCT/US2015/046149 dated Nov. 6, 2015. |
Seaeagleboats: How to assemble and use the Sea Eagle SailCat Inflatable Catamaran Sailboat. YouTube. Oct. 16, 2011. [Retrieved Oct. 12, 2015]. Retrieved from the Internet: <URL: https://www.youtube.com/watch?v=—c7nWWCf5mU>. Entire video. |
Number | Date | Country | |
---|---|---|---|
20160052602 A1 | Feb 2016 | US |
Number | Date | Country | |
---|---|---|---|
62040900 | Aug 2014 | US |