The present invention is directed to a dialysis system with improved structural and functional features. In particular, the dialysis system of the present invention is directed to a portable dialysis system with improved modularity, ease of use, and safety features.
Hemodialysis is used for removing toxic wastes from the human body in cases of renal failure. The patient's blood is temporarily brought outside of the body via tubes and passed through at least one semi-permeable membrane, which may be a group of hollow fibers, in a dialyzer. The semi-permeable membrane separates the blood from a dialysate solution. Impurities from the blood pass through the membrane and into the dialysate solutions, primarily by osmotic pressure. The cleansed blood is then returned to the body.
Standard dialysis treatment, using an installed apparatus in hospitals, comprises two phases, namely, (a) dialysis, in which toxic substances and scoriae (normally small molecules) pass through the semi-permeable membrane from the blood to the dialysis liquid, and (b) ultrafiltration, in which a pressure difference between the blood circuit and the dialysate circuit, more precisely a reduced pressure in the latter circuit, causes the blood content of water to be reduced by a predetermined amount.
Dialysis procedures using standard equipment tend to be cumbersome as well as costly, besides requiring the patient to be bound to a dialysis center for long durations. Portable dialysis systems have been developed. U.S. Pat. No. 4,083,777 discloses a hemodialysis system with dialyzer means through which waste impurity-containing blood and a dialysate solution are passed in indirect mass transfer dialyzing relationship for transfer of the waste impurities from the blood to the dialysate solution. The apparatus includes means for transferring waste impurity-containing blood from a patient to said dialyzer means including a flexible resilient tubing pumping section through which blood is pumped and means for returning waste impurity depleted blood to the patient forming a blood flow circuit. Peristaltic pump means are provided with a rotatable pump head assembly including a base member positioned for rotation about a fixed axis with a plurality of circumferentially spaced apart rollers mounted thereon for independent rotation about respective axes parallel to the base member fixed axis.
U.S. Pat. No. 4,443,333 discloses a portable system for dialyzing blood wherein blood passes through an exchange station with the blood contacting one side of a semipermeable membrane and dialysate contacting the other side of the semipermeable membrane, the system comprising elastic tube means adapted to be connected to a blood source and to return blood thereto for conducting blood past a plurality of stations, a blood clot detector and an air bubble detector in communication with said blood tube means, elastic tube means adapted to be connected to a source of dialysate for conducting dialysate past a plurality of stations, means for measuring and regulating dialysate flow, pressure, temperature and conductivity, means for maintaining the dialysate at a lower pressure than the blood during passage through the exchange station, a single motor means having the output shaft thereof connected to at least two peristaltic pumps one for transporting blood in the elastic blood means and the other for transporting dialysate in the elastic dialysate tube means, mechanism associated with the motor means and the peristaltic pumps for maintaining the dialysate flow at about three times the blood flow, each of the peristaltic pumps having an inner arcuate surface, the blood pump having at least one roller associated with the inner arcuate bearing surface to trap the blood tube means therebetween, the dialysate pump having a single roller associated with said inner arcuate bearing surface to trap said dialysate tube means therebetween, actuation of the peristaltic blood pump causing smooth laminar flow of blood in the blood tube means due to the roller, actuation of the peristaltic dialysate pump causing dialysate flow due to a vacuum generated by the single roller resulting in the deformation and return of the elastic dialysate tube means, and control mechanism operatively connected to the blood leak detector and the air bubble detector and to the motor means and to the dialysate flow, pressure, temperature and conductivity measuring means for selectively stopping the dialysate roller thereby halting movement of dialysate through the dialysate tube means and through the exchange station in response to pressure or temperature or conductivity measurements outside of a preselected range while maintaining blood flow and for simultaneously stopping all the rollers in response to a signal from either the blood leak detector or the air bubble detector to shut down the entire system and halt pumping.
U.S. Pat. No. 6,168,578 discloses a portable kidney dialysis system that includes a belt with a drain bag mounted thereon. A pump is also mounted on the belt and coupled between a user and the drain bag. The pump is adapted to pump fluid from the user to the drain bag upon the receipt of a drain signal. Further provided is a pressure switch for detecting when the drain bag is full. A control mechanism serves for transmitting the drain signal to the pump only when the means fails to detect that the drain bag is full. A portable dialysis system called System One made by NxStage is another example of a conventional portable hemodialysis system.
The aforementioned portable dialysis systems suffer from certain disadvantages. First, they are not sufficiently modular, thereby preventing the easy setup, movement, shipping, and maintenance of the systems. Second, the systems are not simplified enough for reliable, accurate use by a patient. The systems' interfaces and methods of using disposable components are subject to misuse and/or errors in usage by patients. For a portable dialysis system to be truly effective, it should be easily and readily used by individuals who are not health-care professionals, with disposable input and data input sufficiently constrained to prevent inaccurate use.
It is therefore desirable to have a portable dialysis system that has a structural design configured to optimize the modularity of the system, thereby enabling the easy setup, movement, shipping, and maintenance of the system. It is further desirable to have system interfaces, through which patients input data or deploy disposable components, configured to prevent errors in usage and sufficiently constrained to prevent inaccurate use.
The present invention is directed toward a modular dialysis system comprising a controller unit having a first external housing with a front side, a back side, a left side, a right side, a top side and a bottom side, wherein said front side comprises a door configured to provide access to an internal volume within said controller unit; a reservoir unit having a second external housing with a front side, a back side, a left side, a right side, a top side and a bottom side, wherein said front side comprises a door configured to provide access to an internal volume within said reservoir unit; wherein said bottom side of the first external housing is adapted to securely and removably attach to said top side of the second external housing and wherein, when said first external housing is securely and removably attached to said second external housing, the controller unit is automatically placed in electrical communication with said reservoir unit.
Optionally, the bottom side of the first external housing comprises an electrical contact pad and the top side of the second external housing comprises a plurality of electrical pins. Optionally, the bottom side of the first external housing comprises a plurality of electrical pins and the top side of the second external housing comprises an electrical contact pad. The controller unit is automatically placed in electrical communication with said reservoir unit when the contact pad is aligned and placed in electrical communication with the plurality of push-pins.
Optionally, when said first external housing is securely and removably attached to said second external housing, the controller unit is automatically placed in data communication with said reservoir unit. The bottom side of the first external housing comprises a first infrared communication port having at least one LED transmitter and at least one LED receiver and the top side of the second external housing comprises a second infrared communication port having at least one LED transmitter and at least one LED receiver. The controller unit is automatically placed in data communication with said reservoir unit when the first infrared communication port is aligned and placed in data communication with the second infrared communication port.
Optionally, the internal volume within said controller unit houses a manifold, a hook, and a guard encircling the manifold. The door configured to provide access to the internal volume within said controller unit has an internal surface and said internal surface comprises a plurality of pump shoes, a latch, and casing with sides that protrude into said internal volume when said door is closed. When the door is closed, said latch mechanically engages said hook. The modular dialysis system further comprises a controller configured to actuate a motor to apply a motive force to said hook and said application of motive force causes said door to be closed with a force in a range of 90 to 110 lbs. The modular dialysis system further comprises a mechanical release button having a first state and a second state, wherein, in said first state, the button is capable of mechanically engaging said hook and wherein, in said second state, the button is not capable of mechanically engaging said hook.
In another embodiment, the present invention is directed to a modular dialysis system comprising a controller unit having a first external housing with a front side, a back side, a left side, a right side, a top side and a bottom side, wherein said front side comprises a door configured to provide access to an internal volume within said controller unit; a reservoir unit having a second external housing with a front side, a back side, a left side, a right side, a top side and a bottom side, wherein said front side comprises a door configured to provide access to an internal volume within said reservoir unit, wherein said top side has an angled surface with a plurality of channels in fluid communication with at least one leak detector; and wherein said bottom side of the first external housing is adapted to securely and removably attach to said top side of the second external housing.
Optionally, the bottom side of the first external housing comprises an electrical contact pad and the top side of the second external housing comprises a plurality of electrical pins. The controller unit is automatically placed in electrical communication with said reservoir unit when the contact pad is aligned and placed in electrical communication with the plurality of push-pins. The bottom side of the first external housing comprises a first infrared communication port having at least one LED transmitter and at least one LED receiver and the top side of the second external housing comprises a second infrared communication port having at least one LED transmitter and at least one LED receiver. The controller unit is automatically placed in data communication with said reservoir unit when the first infrared communication port is aligned and placed in data communication with the second infrared communication port.
Optionally, the internal volume within said controller unit houses a hook and the door configured to provide access to the internal volume within said controller unit has an internal surface that comprises a latch. The modular dialysis system further comprises a controller configured to actuate a motor to apply a motive force to said hook in response to a user input and said application of motive force causes said door to be closed with a force in a range of 90 to 110 lbs. The modular dialysis system further comprises a mechanical release button having a first state and a second state, wherein, in said first state, the button is capable of mechanically engaging said hook and wherein, in said second state, the button is not capable of mechanically engaging said hook.
These and other embodiments will be described in more detail in the Detailed Description section in relation to the Drawings.
Embodiments of the present invention are described in greater detail with respect to the following drawings:
While the present invention may be embodied in many different forms, for the purpose of promoting an understanding of the principles of the invention, reference will now be made to the embodiments illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended. Any alterations and further modifications in the described embodiments, and any further applications of the principles of the invention as described herein are contemplated as would normally occur to one skilled in the art to which the invention relates.
“Duration” and variations thereof refer to the time course of a prescribed treatment, from initiation to conclusion, whether the treatment is concluded because the condition is resolved or the treatment is suspended for any reason. Over the duration of treatment, a plurality of treatment periods may be prescribed during which one or more prescribed stimuli are administered to the subject.
“Period” refers to the time over which a “dose” of stimulation is administered to a subject as part of the prescribe treatment plan.
The term “and/or” means one or all of the listed elements or a combination of any two or more of the listed elements.
The terms “comprises” and variations thereof do not have a limiting meaning where these terms appear in the description and claims.
Unless otherwise specified, “a,” “an,” “the,” “one or more,” and “at least one” are used interchangeably and mean one or more than one.
For any method disclosed herein that includes discrete steps, the steps may be conducted in any feasible order. And, as appropriate, any combination of two or more steps may be conducted simultaneously.
Also herein, the recitations of numerical ranges by endpoints include all numbers subsumed within that range (e.g., 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, 5, etc.). Unless otherwise indicated, all numbers expressing quantities of components, molecular weights, and so forth used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless otherwise indicated to the contrary, the numerical parameters set forth in the specification and claims are approximations that may vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques.
Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. All numerical values, however, inherently contain a range necessarily resulting from the standard deviation found in their respective testing measurements.
The present invention is directed toward a dialysis unit that is modular and portable, with improved functionality. Referring to
Between the dialyzer 103 and door 110 are anti-coagulant pumps in the form of syringe pumps 190. Optionally, the top unit 101 can comprise a bottle holder 190 that has a spiked base to receive a bottle, top-down, within the bottle holder housing. Infusion lines are connected to the inlet of the blood pump, outlet of the blood pump, or outlet of the dialyzer (blood side). The infusion lines could also ‘thread’ through air bubble detectors to sense if/when the anti-coagulant is emptied or blocked.
The dialysis system of the present invention achieves functional and operational parameters that represent a substantial improvement over the prior art. The top unit is in the range of approximately 20-40 pounds, and more particularly 30 pounds, and the bottom unit is in the range of approximately 15-30 pounds, and more particularly 22 pounds, thereby weighing less than prior art systems. The top unit is in the range of approximately 1 to 4 cubic feet, and more particularly 2.3 cubic feet, and the bottom unit is in the range of approximately 1 to 4 cubic feet, and more particularly 2.8 cubic feet, thereby having a smaller volume than prior art systems.
In one embodiment, referring to
The base unit 1702 may further be defined by two shoulders 1704, each extending outward, along the length of the base unit 1702, from the sides of a centrally positioned top unit 1701. The top unit is preferably positioned in the center of the base unit 1702, as measured by length Lb. Accordingly, the shoulder 1704 can be defined has having a length in the range of 4 inches to 10 inches, more preferably approximately 7 inches. Extending upward from the surface of the base unit 1702, where shoulders 1704 physically meet top unit 1701, is a lip 1703 that defines a surface upon which top unit 1701 is aligned and placed. The lip 1703 is contiguous around the base of the top unit 1701, having the same length and depth as the top unit 1701, with a height defined as the difference between Ht2 and Ht. In one embodiment, the lip height is in the range of 0.1 to 3.5 inches, more preferably 0.6 inches. The overall height of the system, Ht3, is in the range of 10 to 35 inches, more preferably 22 inches.
The external housing structures defining the top unit 1701 and base unit 1702 may be characterized as rectangular parallelpipeds, cuboids, or boxes, each with four sides, a top, and a bottom. In an exemplary embodiment, for both the top unit 1701 and base unit 1702, two of the four sides, each having an exterior and interior surface, have the same height, length, and depth, while the top and bottom structures, each having an exterior and interior surface, have the same height, length, and depth.
It should be appreciated that the system configuration shown in
The dialysis system uses less water than prior art systems. Conventional systems use approximately 120 liters per treatment. In one embodiment, the present systems uses between 3 and 8 liters, and more particularly between 5 and 6 liters. Furthermore, the system does not require a home drain, supply connection, or separate outlet to address excess water.
Additionally, in one embodiment, the present invention uses a multi-pass sorbent system, as disclosed in XCORP212 and incorporated herein by reference. Accordingly, the system does not require a separate purified water input with a reverse osmosis system and, instead, can use regular tap water that is then purified using the sorbent system.
Furthermore, the system design is more compact, with low power requirements (only 300 at peak and 50 to 100 W during operation), no separate fluid bags required for priming or travel, and integrated pumps. The device operates using a blood flow range of 20-600 Qb (ml/min), a dialysate flow of 50-500 Qd (ml/min). The volumetric accuracy is also precise at less than +/−30 ml/hr.
As demonstrated in
To enable the above described modularity, embodiments of the present invention employ a latching mechanism that, in a first configuration, securely attaches the bottom unit 202 to the top unit 201 and can be manipulated to removably detach the bottom unit 202 from the top unit 201. Even though the two systems could be simply stacked atop each other, without a latch, the presence and use of a latch reduces the likelihood of an accidental disconnection. Furthermore, when latched together the device is easier to move. The latch mechanism preferably uses no tools and is simply achieved using a male/female mating connections present on the top component and bottom component. Further preferably, the latch mechanism is designed to ensure solid alignment between the top and bottom components, thereby enabling the use of an electronic components (such as exposed electronic connectors on the bottom of the top unit and top of the bottom unit as further described below) which, when the units are properly aligned, automatically come into contact and complete a power circuit. This permits the use of a single power supply and simple connection/disconnection.
Referring to
The latching mechanisms, as shown in
To securely and removably attach the bottom unit to the top unit, the top unit comprises complementary mechanical sliding latches, which are securely attached to the base of the top unit. In one embodiment, the base of the top unit comprises a first latch that is preferably positioned in the center of top unit, relative to the length of the top unit, and a distance equal to one third of the width of the top unit, as measured from a first side. The base also comprises a second latch that is preferably positioned in the center of top unit, relative to the length of the top unit, and a distance equal to one third of the width of the top unit, as measured from a second side, which is opposite and parallel to the first side.
As shown in
Latches 1300, attached to the top unit, mate with latch mating structures 1420a, 1420b on the top surface of the bottom unit 1406. In operation, when the sliding latch 1300 is in a first position, the top unit will not effectively fit on top of, or align with, the base unit because the sliding latch 1300 will not properly physically mate with latch mating structures 1420a, 1420b. To prepare the top unit for secure placement on to the top surface of the base unit 1406, the sliding latches are moved within the member holding structure positioned on the bottom of the top unit and placed into a second position.
In the second position, the handle of the latch 1311 will protrude, thereby moving the tabs 1315 away from the latch mating structures 1420a, 1420b and allowing the top unit to sit correctly on the base unit. Referring to
Aligning the rubber footings 1840 into the cavities 1830 and the pins 1860 into the cavities 1880 ensures that latches 1880 on the top unit 1801 can be readily aligned and latched to the latch matching structures 1863 without excessive trial and error. Once aligned, the latch 1880 is mated with the latch mating structures 1863 by sliding the latches 1880 into the latch mating structures 1863, thereby creating a tight fit between the two units. Referring back to
Furthermore, to enable the above described modularity, embodiments of the present invention also employ an electrical and communication connection mechanism that, in a first configuration, securely establishes electrical communication and/or data communication connection between the bottom unit and the top unit and, in a second configuration, terminates an electrical communication and/or data communication connection between the bottom unit to the top unit.
Referring to
In one embodiment, a high current power connection is created by placing six spring loaded pins into electrical contact with contact pads, which are integrated into the bottom surface of the top unit. Three pins are for +24 volt DC current and three pins are for ground. In one embodiment, the pins or probes have the following characteristics: a) minimum center of 0.175 inches, b) current rating of 15 amps (continuous), c) spring force in the range of 6.2 oz to 9.0 oz at 0.06 inches to 0.067 inches of travel, d) typical resistance of less than 10 mΩ, e) maximum travel in the range of 0.09 to 0.1 inches, f) working travel in the range of 0.06 to 0.067 inches, g) barrel made of nickel/silver and gold plated, h) stainless steel spring (optionally gold plated), i) plunger made of full-hard beryllium copper and gold plated, and j) optionally a stainless steel bias ball. The spring force of the pins assists in preventing breakage by absorbing bending or other contortions. It should be appreciated that the term electrical pins represents any protusion capable of transmitting electrical power and electrical contact paid represents any surface capable of receiving an electrical pin.
The non-contact infrared communication port 1603 employs two LED transmitters and two LED receivers which align to, and communicate with, two LED transmitters and two LED receivers on the bottom surface of the top unit. The distance between the transmit and receive ports is less than 0.3 inches. On both the top surface of the bottom unit and bottom surface of the top unit, the four LED units are divided into two pairs, a control pair (comprising one transmitter and one receiver) and one safety pair (comprising one transmitter and one receiver). These ports are placed in data communication when the top and bottom units are properly aligned. In one embodiment, the LED transmitters are high speed infrared emitting diodes, 870 nm, made of GaAlAs double hetero technology. The LED transmitters are high speed diodes having the following characteristics: a) extra high radiant power, b) low forward voltage, c) suitable for high pulse current operation, d) angle of half intensity of approximately 17 degrees, e) peak wavelength of approximately 870 nm, f) reverse voltage of approximately 5V, g) forward current of approximately 100 mA, h) a peak forward current of approximately 200 mA, i) surge forward current of approximately 0.8 A, j) power dissipation of approximately 190 mW) junction temperature of approximately 100 degrees Celsius, and l) an operating temperature range of −40 to 85 degrees Celsius. It should be appreciated that the non-contact infrared communication ports can be distributed in any functional manner across the top surface of the bottom unit or bottom surface of the top unit. It should further appreciated that any other communication port or structure known to persons of ordinary skill in the art can be implemented herein.
In one embodiment, the LED receivers are high speed silicon photodiodes with extra fast response times, radiant sensitive area of approximately 0.25 mm2 and an angle of half sensitivity of approximately 15 degrees.
The LED receivers have the following characteristics: a) reverse voltage of approximately 60V, b) power dissipation of approximately 75 mW, c) junction temperature of approximately 100 degrees Celsius, d) an operating temperature range of −40 to 85 degrees Celsius, e) forward voltage of approximately 1V, f) minimum breakdown voltage of 60V, and g) diode capacitance of approximately 1.8 pF.
Referring back to
Referring to
Also attached to the internal frame or casing 510 is a metal door 562, with hinges 565, which forms the internal frame of door 110, shown in
The top of the controller unit, or shelf 505, is flat and has side-walls making it ideal for storage of supplies or a temporary working surface. Referring to
Another structural feature of the controller unit 1001 is shown in
Upon doing so, the reader obtains identifying information about the disposable, transmits that identifying information to an internal table stored in memory, compares the identifying information to the contents of the internal table, and verifies (or does not verify) that the correct disposable components (particularly additives used in the dialysate) are present. The contents of the internal table can be generated by manual input of the identity and amount of the disposables or by remote access to a prescription that details the identity and amount of the disposables. This verification step has at least two benefits. The first is to ensure that the user has, in his or her possession, all of the required components and the second is to ensure that the correct components are being used (not counterfeit or unsuitable disposables).
In another embodiment, the reader 1005 mounted on the side of the top unit is a specialized multi-function infrared camera that, in one mode, provides the ability to read bar codes and, in another mode, detects a level change in the infusate container. The camera emits an infrared signal that reflects off fluid level. The reflected signal is received by the camera's infrared receiver and processed, using a processor, to determine the location of the meniscus of the fluid level. In one embodiment, the camera can determine and monitor a change in the fluid level to a resolution of 0.02 mm. In one embodiment, the camera is a 1.3 megapixel single-chip camera module with one or more of the following characteristics: a) 1280 H×1024V active pixels, b) 3.0 μm pixel size, c) ⅓ inch optical format, d) RGB Bayer color filter array, e) integrated 10-bit ADC, f) integrated digital image processing functions including defect correction, lens shading correction, image scaling, demosaicing, sharpening, gamma correction, and color space conversion, g) embedded camera controller for automatic exposure control, automatic white balance control, and back level compensation, h) programmable frame rate and output derating functions, i) up to 15 fps SXGA progressive scan, j) low power 30 fps VGA progressive scan, k) 8-bit parallel video interface, 1) two-wire serial control interface, m) on-chip PLL, n) analog power supply from 2.4 to 3.0 V, o) separate I/O power supply, p) integrated power management with power switch, and q) 24 pin shield socket options. In one embodiment, the camera is a 1.3 megapixel camera made by ST Microelectronics, Model No. VL6624/V6624.
The top or bottom unit of the dialysis system also preferably has electronic interfaces, such as Ethernet connections or USB ports, to enable a direct connection to a network, thereby facilitating remote prescription verification, compliance vigilance, and other remote servicing operations. The USB ports permit direct connection to accessory products such as blood pressure monitors or hematocrit/saturation monitors. The interfaces are electronically isolated, thereby ensuring patient safety regardless of the quality of the interfacing device.
The front of the top unit has a graphical user interface 114 that provides for a simple user interface with the system 100. In a home setting it is important that the device be easy to use. Maximal use of colors and the touch screen is ideally suited for the application. The touch screen allows multiple user input configurations, provides multiple language capability, and can be readily seen at night (particularly with brightness controls and night-vision colors). The GUI further includes a feature for the automatic closing, opening, and locking of the door during operation. In one embodiment, the GUI opens the door to a first latch position and then a user must press a physical door-open button to fully open the door. In another embodiment, the device has a manual override which permits the user to open the door (e.g. by pressing the open door button twice or with extra force) to manually open the door. Referring to
Referring to
Referring to
The internal surfaces of the sides 721 comprise a plurality of rails, elongated members, or protusions 719 that serve to secure, hold, encase or attach to a disposable reservoir bag mounting surface, such as a plastic sheet, 710 to which a reservoir bag can be attached. Specifically, a reservoir bag positioned on surface 715 can have an outlet attached to conduit 771 integrated into sheet 710. Mounted in each of the four corners of the scale surface 718 are flexures 705 with each one comprising a hall sensor and magnet.
Referring to
The placement of disposable components, such as the dialyzer 103, sorbent cartridge 107, and infusate, in a manner that is external to the system but easily accessible permits the use of multiple sized sorbent cartridges, dialyzers, and infusate mixes, thereby giving greater flexibility to the use and applicability of the system. Referring to
The front door opens widely (approximately 100 degrees), for loading the disposables. Having a wide opening facilitates manifold loading and easy cleaning of the faces of the machine and inside of the door. Having the door close and cover the moving parts of the device makes it safer and more robust, which is particularly important for home use. Additionally, having the front door house the display saves space and re-enforces the important point that the device is not to be operated unless the disposables are in place and the door is closed. The door provides the necessary occlusion force on the manifold and its pump segments. The door also contains a touch screen, audio alarm, and manual stop button in the face of the door.
In one embodiment, the door is held in a fully closed position by an electric stepper motor. This motor is operated via the user interface and, in particular, by a user pressing a button when the door is ready to be fully closed or opened. To ensure proper pressure is placed on the manifold structures by the door and pump shoes, it is preferred to have an electronic mechanism by which the door is closed and sufficient closing door force is generated. In one embodiment, a closing door force of 90 to 110 lbs is generated.
Referring to
Operationally, a user closes the door sufficiently to engage the U-latch 410 on the door with the hook 450 inside the internal volume of the controller unit, as shown in
When a user wishes to open the door, a mechanical button or graphical user interface icon is activated, sends a signal to a controller that, in turn, actuates the stepper motor 1106 in reverse. The hook then becomes loosely engaged with the U-shaped latch. A mechanical release button 1107 is then pressed to disengage the loosely engaged hook from the U-shaped latch.
In addition to providing the requisite closing force, this power door closing mechanism has several important features. First, it is designed to avoid obstructions from being caught in the door and subject to the powerful door closing force. Referring to
Second, the mechanical button release 1107 can only be actuated when the power closing door force has been dissipated through the reverse motion of the stepper motor, thereby preventing an accidental release of, and rapid opening of, the door. Referring to
As discussed above, shelving space formed by the bottom unit and surrounding the top unit employs drainage paths with fluid sensors, in multiple locations internal and external to the device, in order to enable zoned leak detection. Specifically, by building in drainage paths, with optical leak sensors, into the external body of the device, the system captures and routes fluids potentially leaked from the external components (like the sorbent canister) to the optical leak sensors.
In one embodiment, integrated within the external housings of the bottom unit are at least three different optical leak detectors. Referring to
A first optical leak detector 988a is located on the front right corner of the top surface of the bottom unit 902. A second optical leak detector 988b is located on the front left corner of the top surface of the bottom unit 902. Each leak detector is positioned within a well or cavity and comprises an optical sensor, which is located in the side of the well. The optical sensor detects fluids that have drained and/or been channeled to the wells and transmits a detected signal to a controller in the top unit. The detected signal is processed by a processor determine if a leak has occurred. Detected signals are then stored and, if required, the processor causes an alarm or alert to display on the GUI. The well or cavity preferably comprises a rounded base to permit the user to easily wipe the well dry.
Referring to
The drainage paths serve two functions: a) to make sure fluid does not enter the instrument and b) to make sure that a leak is quickly contained and routed to a sensor which can trigger an alert or alarm. Additionally, the device preferably also includes fluid drainage channels leading to wells with optical sensors on the interior of the device. So for instance if there is a leak in the internal reservoir the fluid is routed away from critical components and an optical sensor warns of the leak. Based on the sensor activated, the GUI can present an alarm to the user and can specifically identify the location of the fluid leak. By providing several independent zones of leak detection (several fluid sensors and drainage paths), the instrument can guide the user to find the leak quickly. Having multiple channels and sensors allows the system to partially, automatically, identify the source of the leak and offer graphic assistance, toward remedy of the problem, to the user.
While there has been illustrated and described what is at present considered to be a preferred embodiment of the present invention, it will be understood by those skilled in the art that various changes and modifications may be made, and equivalents may be substituted for elements thereof without departing from the true scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the central scope thereof. Therefore, it is intended that this invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out the invention, but that the invention will include all embodiments falling within the scope of the appended claims.
The present invention relies on U.S. Patent Provisional No. 61/109,834, filed on Oct. 30, 2008, for priority. The present invention is also related to U.S. patent application Ser. Nos. 12/575,450, filed on Oct. 7, 2009, Ser. No. 12/575,449, filed on Oct. 7, 2009, Ser. No. 12/355,102, filed on Jan. 16, 2009, Ser. No. 12/355,128, filed on Jan. 16, 2009, Ser. No. 12/351,969, filed on Jan. 12, 2009, Ser. No. 12/324,924, filed on Nov. 28, 2008, Ser. No. 12/210,080, filed on Sep. 12, 2008, Ser. No. 12/238,055, filed on Sep. 25, 2008, Ser. No. 12/237,914, filed on Sep. 25, 2008, Ser. No. 12/249,090, filed on Oct. 10, 2008, and Ser. No. 12/245,397, filed on Oct. 3, 2008. All of the aforementioned applications are herein incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
2328381 | Jaffe | Aug 1943 | A |
3242456 | Duncan | Mar 1966 | A |
3388803 | Scott | Jun 1968 | A |
3709222 | De Vries | Jan 1973 | A |
3746175 | Markley | Jul 1973 | A |
3803913 | Tracer | Apr 1974 | A |
3814376 | Reinicke | Jun 1974 | A |
3884808 | Scott | May 1975 | A |
3894431 | Muston | Jul 1975 | A |
3902490 | Jacobsen | Sep 1975 | A |
3946731 | Lichtenstein | Mar 1976 | A |
3961918 | Johnson | Jun 1976 | A |
3989622 | Marantz | Nov 1976 | A |
3989625 | Mason | Nov 1976 | A |
3994799 | Yao | Nov 1976 | A |
4000072 | Sato | Dec 1976 | A |
4071444 | Ash et al. | Jan 1978 | A |
4083777 | Hutchisson | Apr 1978 | A |
4094775 | Mueller | Jun 1978 | A |
4113614 | Rollo | Sep 1978 | A |
4118314 | Yoshida | Oct 1978 | A |
4209392 | Wallace | Jun 1980 | A |
4212738 | Henne | Jul 1980 | A |
4247393 | Wallace | Jan 1981 | A |
4267040 | Schael | May 1981 | A |
4269708 | Bonomini | May 1981 | A |
4326955 | Babb | Apr 1982 | A |
4348283 | Ash | Sep 1982 | A |
4354562 | Newman | Oct 1982 | A |
4368737 | Ash | Jan 1983 | A |
4387777 | Ash | Jun 1983 | A |
4397189 | Johnson | Aug 1983 | A |
4397519 | Cooney | Aug 1983 | A |
4402694 | Ash et al. | Sep 1983 | A |
4403765 | Fisher | Sep 1983 | A |
4403984 | Ash et al. | Sep 1983 | A |
4413988 | Handt et al. | Nov 1983 | A |
4430098 | Bowman | Feb 1984 | A |
4443333 | Mahurkar | Apr 1984 | A |
4464172 | Lichtenstein | Aug 1984 | A |
4466804 | Hino | Aug 1984 | A |
4469593 | Ishihara et al. | Sep 1984 | A |
4477342 | Allan | Oct 1984 | A |
4480483 | McShane | Nov 1984 | A |
4498902 | Ash et al. | Feb 1985 | A |
4531799 | Gray | Jul 1985 | A |
4535637 | Feller | Aug 1985 | A |
4559039 | Ash et al. | Dec 1985 | A |
4563170 | Aigner | Jan 1986 | A |
4581141 | Ash | Apr 1986 | A |
4596550 | Troutner | Jun 1986 | A |
4599055 | Dykstra | Jul 1986 | A |
4606826 | Sano | Aug 1986 | A |
4630799 | Nolan | Dec 1986 | A |
4661246 | Ash | Apr 1987 | A |
4666598 | Heath | May 1987 | A |
4680122 | Barone | Jul 1987 | A |
4683053 | Polaschegg | Jul 1987 | A |
4710164 | Levin | Dec 1987 | A |
4740755 | Ogawa | Apr 1988 | A |
4750705 | Zippe | Jun 1988 | A |
4762618 | Gummesson | Aug 1988 | A |
4765907 | Scott | Aug 1988 | A |
4777953 | Ash et al. | Oct 1988 | A |
4806247 | Schoendorfer | Feb 1989 | A |
4828543 | Weiss | May 1989 | A |
4831884 | Drenthen | May 1989 | A |
4854322 | Ash et al. | Aug 1989 | A |
4861242 | Finsterwald | Aug 1989 | A |
4885942 | Magori | Dec 1989 | A |
4897189 | Greenwood | Jan 1990 | A |
4909713 | Finsterwald | Mar 1990 | A |
4914819 | Ash | Apr 1990 | A |
4943279 | Samiotes | Jul 1990 | A |
4950244 | Fellingham | Aug 1990 | A |
4950395 | Richalley | Aug 1990 | A |
4968422 | Runge | Nov 1990 | A |
4990258 | Bjare | Feb 1991 | A |
4995268 | Ash et al. | Feb 1991 | A |
4997570 | Polaschegg | Mar 1991 | A |
5002054 | Ash et al. | Mar 1991 | A |
5011607 | Shinzato | Apr 1991 | A |
5032261 | Pyper | Jul 1991 | A |
5074368 | Bullivant | Dec 1991 | A |
5100554 | Polaschegg | Mar 1992 | A |
5114580 | Ahmad et al. | May 1992 | A |
5147613 | Heilmann et al. | Sep 1992 | A |
5152174 | Labudde | Oct 1992 | A |
5157332 | Reese | Oct 1992 | A |
5161779 | Graner | Nov 1992 | A |
5170789 | Narayan | Dec 1992 | A |
5198335 | Sekikawa et al. | Mar 1993 | A |
5211643 | Reinhardt et al. | May 1993 | A |
5215450 | Tamari | Jun 1993 | A |
5228308 | Day | Jul 1993 | A |
5230341 | Polaschegg | Jul 1993 | A |
5230614 | Zanger | Jul 1993 | A |
5258127 | Gsell | Nov 1993 | A |
5277820 | Ash | Jan 1994 | A |
5284470 | Beltz | Feb 1994 | A |
5284559 | Lim | Feb 1994 | A |
5295505 | Polaschegg et al. | Mar 1994 | A |
5304349 | Polaschegg | Apr 1994 | A |
5308315 | Khuri et al. | May 1994 | A |
5322258 | Bosch | Jun 1994 | A |
5322519 | Ash | Jun 1994 | A |
5346472 | Keshaviah | Sep 1994 | A |
5360445 | Goldowsky | Nov 1994 | A |
5385005 | Ash | Jan 1995 | A |
5391143 | Kensey | Feb 1995 | A |
5405315 | Khuri et al. | Apr 1995 | A |
5405320 | Twardowski | Apr 1995 | A |
5415532 | Loughnane | May 1995 | A |
5441636 | Chevallet | Aug 1995 | A |
5445630 | Richmond | Aug 1995 | A |
5460493 | Deniega et al. | Oct 1995 | A |
D355816 | Ash | Dec 1995 | S |
5476444 | Keeling et al. | Dec 1995 | A |
D370531 | Ash et al. | Jun 1996 | S |
5536412 | Ash | Jul 1996 | A |
5540265 | Polaschegg et al. | Jul 1996 | A |
5545131 | Davankov | Aug 1996 | A |
5577891 | Loughnane et al. | Nov 1996 | A |
5580460 | Polaschegg | Dec 1996 | A |
5609770 | Zimmerman | Mar 1997 | A |
5614677 | Wamsiedler et al. | Mar 1997 | A |
5629871 | Love | Mar 1997 | A |
5616305 | Mathieu | Apr 1997 | A |
5624551 | Baumann et al. | Apr 1997 | A |
5632897 | Mathieu | May 1997 | A |
5644285 | Maurer | Jul 1997 | A |
5674390 | Matthews | Oct 1997 | A |
5679245 | Manica | Oct 1997 | A |
5693008 | Brugger | Dec 1997 | A |
5698083 | Glass | Dec 1997 | A |
5711883 | Folden et al. | Jan 1998 | A |
5713850 | Heilmann et al. | Feb 1998 | A |
5725773 | Polaschegg | Mar 1998 | A |
5725776 | Kenley et al. | Mar 1998 | A |
5744027 | Connell | Apr 1998 | A |
5770806 | Hiismaeki | Jun 1998 | A |
5782796 | Din et al. | Jul 1998 | A |
5794669 | Polaschegg et al. | Aug 1998 | A |
5840068 | Cartledge | Nov 1998 | A |
5858186 | Glass | Jan 1999 | A |
5876419 | Carpenter | Mar 1999 | A |
5902336 | Mishkin | May 1999 | A |
5906978 | Ash | May 1999 | A |
5919369 | Ash | Jul 1999 | A |
5938938 | Bosetto | Aug 1999 | A |
5944684 | Roberts | Aug 1999 | A |
5945343 | Munkholm | Aug 1999 | A |
5947953 | Ash et al. | Sep 1999 | A |
5951870 | Utterberg | Sep 1999 | A |
5980481 | Gorsuch | Nov 1999 | A |
5984891 | Keilman | Nov 1999 | A |
5989423 | Kamen | Nov 1999 | A |
5989438 | Fumiyama | Nov 1999 | A |
6042561 | Ash et al. | Mar 2000 | A |
6044691 | Kenley et al. | Apr 2000 | A |
6086753 | Ericson | Jul 2000 | A |
6117100 | Powers | Sep 2000 | A |
6117122 | Din | Sep 2000 | A |
6156007 | Ash | Dec 2000 | A |
6168578 | Diamond | Jan 2001 | B1 |
6190349 | Ash et al. | Feb 2001 | B1 |
6196922 | Hantschk | Mar 2001 | B1 |
6196992 | Keilman | Mar 2001 | B1 |
6200485 | Kitaevich | Mar 2001 | B1 |
6217540 | Yazawa et al. | Apr 2001 | B1 |
6234989 | Brierton et al. | May 2001 | B1 |
6254567 | Treu et al. | Jul 2001 | B1 |
6264611 | Ishikawa | Jul 2001 | B1 |
6264680 | Ash | Jul 2001 | B1 |
6280406 | Dolcek | Aug 2001 | B1 |
6284131 | Hogard | Sep 2001 | B1 |
6287516 | Matson et al. | Sep 2001 | B1 |
6303036 | Collins et al. | Oct 2001 | B1 |
6325774 | Bene | Dec 2001 | B1 |
6332985 | Sherman et al. | Dec 2001 | B1 |
6348162 | Ash | Feb 2002 | B1 |
6406631 | Collins | Jun 2002 | B1 |
6409699 | Ash | Jun 2002 | B1 |
6416293 | Bouchard | Jul 2002 | B1 |
6468427 | Frey | Oct 2002 | B1 |
6471872 | Kitaevich et al. | Oct 2002 | B2 |
6487904 | Myhre | Dec 2002 | B1 |
6491656 | Morris | Dec 2002 | B1 |
6491673 | Palumbo | Dec 2002 | B1 |
6497675 | Davankov | Dec 2002 | B1 |
6517045 | Northedge | Feb 2003 | B1 |
6551513 | Nikaido et al. | Apr 2003 | B2 |
6554789 | Brugger et al. | Apr 2003 | B1 |
6561997 | Weitzel | May 2003 | B1 |
6572576 | Brugger et al. | Jun 2003 | B2 |
6572641 | Brugger et al. | Jun 2003 | B2 |
6579253 | Burbank et al. | Jun 2003 | B1 |
6579460 | Willis et al. | Jun 2003 | B1 |
6582385 | Burbank et al. | Jun 2003 | B2 |
6589482 | Burbank et al. | Jul 2003 | B1 |
6595943 | Burbank | Jul 2003 | B1 |
6607495 | Skalak et al. | Aug 2003 | B1 |
6610036 | Branch | Aug 2003 | B2 |
6623470 | Munis et al. | Sep 2003 | B2 |
6627164 | Wong | Sep 2003 | B1 |
6632192 | Gorsuch | Oct 2003 | B2 |
6638477 | Treu et al. | Oct 2003 | B1 |
6638478 | Treu et al. | Oct 2003 | B1 |
6649063 | Brugger et al. | Nov 2003 | B2 |
6653841 | Koerdt et al. | Nov 2003 | B1 |
6673314 | Burbank et al. | Jan 2004 | B1 |
6681624 | Furuki | Jan 2004 | B2 |
6685664 | Levin | Feb 2004 | B2 |
6690280 | Citrenbaum | Feb 2004 | B2 |
6695803 | Robinson | Feb 2004 | B1 |
6702561 | Stillig et al. | Mar 2004 | B2 |
6706007 | Gelfand | Mar 2004 | B2 |
6730266 | Matson et al. | May 2004 | B2 |
6743193 | Brugger et al. | Jun 2004 | B2 |
6758975 | Peabody | Jul 2004 | B2 |
6764460 | Dolecek et al. | Jul 2004 | B2 |
6773412 | OMahony et al. | Aug 2004 | B2 |
6776912 | Baurmeister | Aug 2004 | B2 |
6796955 | OMahony et al. | Sep 2004 | B2 |
6818196 | Wong | Nov 2004 | B2 |
6830553 | Burbank et al. | Dec 2004 | B1 |
6836201 | Devenyi | Dec 2004 | B1 |
6841172 | Ash | Jan 2005 | B1 |
6843779 | Andrysiak | Jan 2005 | B1 |
6852090 | Burbank et al. | Feb 2005 | B2 |
6872346 | Stillig | Mar 2005 | B2 |
6878283 | Thompson | Apr 2005 | B2 |
6890315 | Levin | May 2005 | B1 |
6899691 | Bainbridge | May 2005 | B2 |
6923782 | O'Mahony et al. | Aug 2005 | B2 |
6948697 | Herbert | Sep 2005 | B2 |
6955655 | Burbank et al. | Oct 2005 | B2 |
6958049 | Ash | Oct 2005 | B1 |
6960179 | Gura | Nov 2005 | B2 |
6960328 | Bortun et al. | Nov 2005 | B2 |
6979309 | Burbank et al. | Dec 2005 | B2 |
7004924 | Brugger et al. | Feb 2006 | B1 |
7007549 | Kwon | Mar 2006 | B2 |
7033498 | Wong | Apr 2006 | B2 |
7040142 | Burbank | May 2006 | B2 |
7087026 | Callister | Aug 2006 | B2 |
7087033 | Brugger et al. | Aug 2006 | B2 |
7101519 | Wong | Sep 2006 | B2 |
7112273 | Weigel et al. | Sep 2006 | B2 |
7115095 | Eigler et al. | Oct 2006 | B2 |
7135156 | Hai et al. | Nov 2006 | B2 |
7144386 | Korkor et al. | Dec 2006 | B2 |
7147613 | Burbank et al. | Dec 2006 | B2 |
7169303 | Sullivan et al. | Jan 2007 | B2 |
7175809 | Gelfand et al. | Feb 2007 | B2 |
7214312 | Brugger et al. | May 2007 | B2 |
7226538 | Brugger et al. | Jun 2007 | B2 |
7241272 | Karoor et al. | Jul 2007 | B2 |
7252767 | Bortun et al. | Aug 2007 | B2 |
7267658 | Treu et al. | Sep 2007 | B2 |
7270015 | Feller | Sep 2007 | B1 |
7273465 | Ash | Sep 2007 | B2 |
7276042 | Polaschegg et al. | Oct 2007 | B2 |
7300413 | Burbank et al. | Nov 2007 | B2 |
7309323 | Gura et al. | Dec 2007 | B2 |
7314208 | Rightley | Jan 2008 | B1 |
7317967 | DiGianfilippo et al. | Jan 2008 | B2 |
7332096 | Blickhan | Feb 2008 | B2 |
7337674 | Burbank et al. | Mar 2008 | B2 |
7338460 | Burbank et al. | Mar 2008 | B2 |
7347849 | Brugger et al. | Mar 2008 | B2 |
7351218 | Bene | Apr 2008 | B2 |
7387022 | Korniyenko | Jun 2008 | B1 |
7494590 | Felding et al. | Feb 2009 | B2 |
7531098 | Robinson | May 2009 | B2 |
7597677 | Gura | Oct 2009 | B2 |
7605710 | Crnkovich | Oct 2009 | B2 |
7618531 | Sugioka | Nov 2009 | B2 |
7628378 | Adams | Dec 2009 | B2 |
7645253 | Gura | Jan 2010 | B2 |
7648476 | Bock | Jan 2010 | B2 |
7696762 | Quackenbush | Apr 2010 | B2 |
7713226 | Ash | May 2010 | B2 |
7755488 | Dvorsky | Jul 2010 | B2 |
7780619 | Brugger | Aug 2010 | B2 |
7794141 | Perry | Sep 2010 | B2 |
7873489 | Dolgos | Jan 2011 | B2 |
7874999 | Busby | Jan 2011 | B2 |
7886611 | OMahony et al. | Feb 2011 | B2 |
7896829 | Gura | Mar 2011 | B2 |
7901376 | Steck et al. | Mar 2011 | B2 |
7922898 | Jonsson | Apr 2011 | B2 |
7922899 | Vasta | Apr 2011 | B2 |
7935074 | Plahey | May 2011 | B2 |
7959129 | Matsumoto | Jun 2011 | B2 |
7981280 | Carr | Jul 2011 | B2 |
7995816 | Roger | Aug 2011 | B2 |
7998101 | Ash | Aug 2011 | B2 |
8021319 | Delnevo | Sep 2011 | B2 |
8029454 | Kelly | Oct 2011 | B2 |
8034235 | Rohde | Oct 2011 | B2 |
8062513 | Yu | Nov 2011 | B2 |
8066658 | Karoor | Nov 2011 | B2 |
8070707 | Gelfand | Dec 2011 | B2 |
8075509 | Molducci | Dec 2011 | B2 |
8078333 | Kienman | Dec 2011 | B2 |
8083677 | Rohde | Dec 2011 | B2 |
8105260 | Tonelli | Jan 2012 | B2 |
8105487 | Fulkerson | Jan 2012 | B2 |
8114288 | Robinson | Feb 2012 | B2 |
8152751 | Roger | Feb 2012 | B2 |
8142383 | Dannenmaier | Mar 2012 | B2 |
8187184 | Muller | May 2012 | B2 |
8197431 | Bennison | Jun 2012 | B2 |
8221320 | Bouton | Jul 2012 | B2 |
8376978 | Roger | Feb 2013 | B2 |
20020068364 | Arai et al. | Jun 2002 | A1 |
20020085951 | Gelfand et al. | Jul 2002 | A1 |
20020112609 | Wong | Aug 2002 | A1 |
20020113016 | Takai | Aug 2002 | A1 |
20020147423 | Burbank | Oct 2002 | A1 |
20020187069 | Levin | Dec 2002 | A1 |
20030012905 | Zumbrum | Jan 2003 | A1 |
20030048185 | Citrenbaum | Mar 2003 | A1 |
20030056585 | Furuki | Mar 2003 | A1 |
20030113931 | Pan et al. | Jun 2003 | A1 |
20030113932 | Sternberg et al. | Jun 2003 | A1 |
20030128125 | Burbank | Jul 2003 | A1 |
20030216677 | Pan et al. | Nov 2003 | A1 |
20030236482 | Gorsuch | Dec 2003 | A1 |
20040021108 | Hallback | Feb 2004 | A1 |
20040031756 | Suzuki et al. | Feb 2004 | A1 |
20040167465 | Mihai | Aug 2004 | A1 |
20050070837 | Ferrarini et al. | Mar 2005 | A1 |
20050086008 | Digianfilippo | Apr 2005 | A1 |
20050131332 | Kelly et al. | Jun 2005 | A1 |
20050133439 | Blickhan | Jun 2005 | A1 |
20050150309 | Beard | Jul 2005 | A1 |
20050240233 | Lippert | Oct 2005 | A1 |
20060064053 | Bollish | Mar 2006 | A1 |
20060122552 | O'Mahony | Jun 2006 | A1 |
20060195064 | Plahey et al. | Aug 2006 | A1 |
20060226057 | Robinson | Oct 2006 | A1 |
20060241543 | Gura | Oct 2006 | A1 |
20060289342 | Sugioka | Dec 2006 | A1 |
20070060786 | Gura | Mar 2007 | A1 |
20070112297 | Plahey et al. | May 2007 | A1 |
20070158249 | Ash | Jul 2007 | A1 |
20070158268 | DeComo | Jul 2007 | A1 |
20070161113 | Ash | Jul 2007 | A1 |
20070179425 | Gura | Aug 2007 | A1 |
20070213654 | Lundtveit et al. | Sep 2007 | A1 |
20070276328 | Childers | Nov 2007 | A1 |
20080006570 | Gura | Jan 2008 | A1 |
20080021366 | Gura | Jan 2008 | A1 |
20080041136 | Kopelman et al. | Feb 2008 | A1 |
20080041792 | Crnkovich et al. | Feb 2008 | A1 |
20080051689 | Gura | Feb 2008 | A1 |
20080058696 | Gura | Mar 2008 | A1 |
20080065006 | Roger | Mar 2008 | A1 |
20080149563 | Ash | Jun 2008 | A1 |
20080195021 | Roger | Aug 2008 | A1 |
20080195060 | Roger | Aug 2008 | A1 |
20080208103 | Demers et al. | Aug 2008 | A1 |
20080217245 | Rambod | Sep 2008 | A1 |
20080230450 | Burbank et al. | Sep 2008 | A1 |
20080258735 | Quackenbush et al. | Oct 2008 | A1 |
20080264498 | Thompson | Oct 2008 | A1 |
20080290974 | Adams | Nov 2008 | A1 |
20090004053 | Kenley | Jan 2009 | A1 |
20090008306 | Cicchello | Jan 2009 | A1 |
20090076434 | Mischelevich | Mar 2009 | A1 |
20090079578 | Dvorsky | Mar 2009 | A1 |
20090080757 | Roger | Mar 2009 | A1 |
20090082646 | Bouton | Mar 2009 | A1 |
20090082647 | Busby | Mar 2009 | A1 |
20090082649 | Muller | Mar 2009 | A1 |
20090082653 | Rohde | Mar 2009 | A1 |
20090082676 | Bennison | Mar 2009 | A1 |
20090095679 | Demers et al. | Apr 2009 | A1 |
20090101549 | Kamen et al. | Apr 2009 | A1 |
20090101552 | Fulkerson | Apr 2009 | A1 |
20090101577 | Fulkerson | Apr 2009 | A1 |
20090105627 | Rohde | Apr 2009 | A1 |
20090112507 | Edney | Apr 2009 | A1 |
20090113335 | Sandoe et al. | Apr 2009 | A1 |
20090114037 | Smith | May 2009 | A1 |
20090120864 | Fulkerson | May 2009 | A1 |
20090124963 | Hogard | May 2009 | A1 |
20090127193 | Updyke | May 2009 | A1 |
20090173682 | Robinson | Jul 2009 | A1 |
20090282980 | Gura | Nov 2009 | A1 |
20090312694 | Bedingfield et al. | Dec 2009 | A1 |
20100022936 | Gura | Jan 2010 | A1 |
20100094193 | Gura | Apr 2010 | A1 |
20100116048 | Fulkerson | May 2010 | A1 |
20100116740 | Fulkerson | May 2010 | A1 |
20100179464 | Smith | Jul 2010 | A1 |
20100184198 | Joseph | Jul 2010 | A1 |
20100209300 | Dirac | Aug 2010 | A1 |
20100312161 | Jonsson | Dec 2010 | A1 |
20100326916 | Wrazel | Dec 2010 | A1 |
20110000830 | Ikeda | Jan 2011 | A1 |
20110000832 | Kelly et al. | Jan 2011 | A1 |
20110009799 | Mullick | Jan 2011 | A1 |
20110028881 | Basaglia | Feb 2011 | A1 |
20110028882 | Basaglia | Feb 2011 | A1 |
20110041928 | Volker | Feb 2011 | A1 |
20110046533 | Stefani | Feb 2011 | A1 |
20110054352 | Ko | Mar 2011 | A1 |
20110071465 | Wang | Mar 2011 | A1 |
20110092907 | Krogh | Apr 2011 | A1 |
20110093294 | Elahi | Apr 2011 | A1 |
20110098545 | Ross | Apr 2011 | A1 |
20110098624 | McCotter | Apr 2011 | A1 |
20110098625 | Masala | Apr 2011 | A1 |
20110098635 | Helmore | Apr 2011 | A1 |
20110105877 | Wilt | May 2011 | A1 |
20110105981 | Wagner | May 2011 | A1 |
20110105983 | Kelly | May 2011 | A1 |
20110105984 | Patel | May 2011 | A1 |
20110106002 | Helmore | May 2011 | A1 |
20110106047 | Burbank | May 2011 | A1 |
20110106466 | Furmanksi | May 2011 | A1 |
20110107251 | Guaitoli | May 2011 | A1 |
20110108482 | Lovell | May 2011 | A1 |
20110125073 | Rambod | May 2011 | A1 |
20110126714 | Brugger | Jun 2011 | A1 |
20110132838 | Curtis | Jun 2011 | A1 |
20110132841 | Rohde | Jun 2011 | A1 |
20110137224 | Ibragimov | Jun 2011 | A1 |
20110137264 | Chelak | Jun 2011 | A1 |
20110139704 | Choi | Jun 2011 | A1 |
20110140896 | Menzel | Jun 2011 | A1 |
20110141116 | Dalesch | Jun 2011 | A1 |
20110152739 | Roncadi | Jun 2011 | A1 |
20110155657 | Collins | Jun 2011 | A1 |
20110160649 | Pan | Jun 2011 | A1 |
20110166507 | Childers | Jul 2011 | A1 |
20110168614 | Pouchoulin | Jul 2011 | A1 |
20110171713 | Bluchel | Jul 2011 | A1 |
20110189048 | Curtis | Aug 2011 | A1 |
20110208072 | Pfeiffer | Aug 2011 | A1 |
20110208106 | Levin | Aug 2011 | A1 |
20110213289 | Toyoda | Sep 2011 | A1 |
20110218475 | Brugger | Sep 2011 | A1 |
20110218487 | Shang | Sep 2011 | A1 |
20110226680 | Jonsson | Sep 2011 | A1 |
20110230814 | Kopperschmidt | Sep 2011 | A1 |
20110237997 | Beden | Sep 2011 | A1 |
20110237998 | Wariar | Sep 2011 | A1 |
20110240537 | Ferrarini | Oct 2011 | A1 |
20110240555 | Ficheux | Oct 2011 | A1 |
20110269167 | Bene | Nov 2011 | A1 |
20110272352 | Braig | Nov 2011 | A1 |
20110275984 | Biewer | Nov 2011 | A1 |
20110284464 | Roncadi | Nov 2011 | A1 |
20110297593 | Kelly | Dec 2011 | A1 |
20110297598 | Lo | Dec 2011 | A1 |
20110297599 | Lo | Dec 2011 | A1 |
20110300010 | Jamagin | Dec 2011 | A1 |
20110300230 | Peterson | Dec 2011 | A1 |
20110303588 | Kelly | Dec 2011 | A1 |
20110303590 | Childers | Dec 2011 | A1 |
20110303598 | Lo | Dec 2011 | A1 |
20110309019 | Ahrens | Dec 2011 | A1 |
20110315611 | Fulkerson | Dec 2011 | A1 |
20120010554 | Vantard | Jan 2012 | A1 |
20120018377 | Tsukamoto | Jan 2012 | A1 |
20120018378 | Kelly | Jan 2012 | A1 |
20120022440 | Childers | Jan 2012 | A1 |
20120029324 | Akonur | Feb 2012 | A1 |
20120029937 | Neftel | Feb 2012 | A1 |
20120031826 | Childers | Feb 2012 | A1 |
20120035534 | Yu | Feb 2012 | A1 |
20120037550 | Childers | Feb 2012 | A1 |
20120043279 | Kelly | Feb 2012 | A1 |
20120065567 | Zarate | Mar 2012 | A1 |
20120075266 | Shimizu | Mar 2012 | A1 |
Number | Date | Country |
---|---|---|
1471617 | Jan 2004 | CN |
0808633 | Nov 1997 | EP |
9823353 | Jun 1998 | WO |
2005089832 | Sep 2005 | WO |
2005089832 | Sep 2005 | WO |
2006120415 | Nov 2006 | WO |
2009045589 | Apr 2009 | WO |
2009045589 | Apr 2009 | WO |
2009073567 | Jun 2009 | WO |
2009091963 | Jul 2009 | WO |
2010042666 | Apr 2010 | WO |
2010042667 | Apr 2010 | WO |
2010062698 | Jun 2010 | WO |
2010081121 | Jul 2010 | WO |
2010114932 | Jul 2010 | WO |
2012108910 | Aug 2012 | WO |
Entry |
---|
International Search Report for PCT/US08/85062, dated Jun. 11, 2009, XCorporeal, Inc. |
Reyes et al., “Acid-Base Derangements During Sorbent Regenerative Hemodialysis in Mechanically Ventilated Patients”, Critical Care Medicine, vol. 19, No. 4, 1991, 554-559 (col. 2, lines 17-22). |
Cobe Renal Care, Inc., “Sorbent Dialysis Primer”, Edition 4, Sep. 1993. |
Cobe Laboratories, Inc., ‘CentrySystem 3 Dialysis Control Unit Operators Manual’, Sep. 1988. |
Fresenius USA, Inc., “Fresenius 2008H Hemodialysis Machine”, Part No. 490005, Revision H, 1994-2001. |
Renal Solutions, Inc., 510(K) for the SORB+ and HISORB+ Cartridges, Mar. 31, 2003. |
CD Medical, Inc., “Operator's Manual Drake Willock 480 Ultrafiltration Control Single Patient Delivery System”, 1988. |
Renal Solutions, Inc., ‘Dialysate Tubing Set and Dialysate Reservoir Bag for the Allient Sorbent Hemodialysis System’, Instructions, 2004. |
NxStage Medical, Inc., “NxStage System One User's Guide”, Software Version 4.3, Part 1 through Part 6-20, 2006. |
NxStage Medical, Inc., “NxStage System One User's Guide”, Software Version 4.3, Part 6-20 through Part C-17, 2006. |
Manns et al., “The acu-men: A New Device for Continuous Renal Replacement Therapy in Acute Renal Failure”, Kidney International, vol. 54 (1998), 268-274. |
REDY 2000 Operator's Manual (1991) (Sorbent cartridge-based hemodialysis system). |
REDY 2000 Service Manual (1989) (Sorbent cartridge-based hemodialysis system). |
Seratron Dialysis Control System Operations Manual (cumulative 1980). |
Ward et al., ‘Sorbent Dialysis Regenerated Dialysis Delivery Systems’, Peritoneal Dialysis Bulletin, Chapter 8, 3(2): S41-S48 (Apr.-Jun. 1983). |
Anthony J. Wing et al., ‘Dialysate Regeneration’, Replacement of Renal Function by Dialysis, Chapter 17, 323-340 (William Drukker et al., eds., Martinus Nijhoff Publishers, 2nd ed., 1983). |
Fresenius AG, ‘Acumen Acute Dialysis Machine Operating Instructions’, Version 1.0, May 1996. |
Renal Solutions, Special 510(k) Device Modification, Allient Sorbent Hemodialysis System, Mar. 15, 2007. |
International Search Report for PCT/US09/59906, Xcorporeal, Inc., dated May 8, 2012. |
International Search Report for PCT/US09/62840, Xcorporeal, Inc. dated Feb. 10, 2012. |
International Search Report for PCT/US11/53184, Xcorporeal, Inc., dated Mar. 2, 2012. |
International Search Report for PCT/US09/31228, Xcorporeal, Inc., dated Jun. 19, 2009. |
International Search Report for PCT/US09/59907, Xcorporeal, Inc., dated Apr. 13, 2010. |
International Search Report for PCT/US10/29500, Xcorporeal, Inc., dated Jul. 2, 2010. |
Examination Report for PCT/US09/59906, New Zealand Intellectual Property Office, dated May 15, 2012. |
Examination Report for PCT/US08/85062, Mexican Patent Office, dated Mar. 11, 2013. |
Search report for PCT/US10/20698, dated Jul. 15, 2010, XCorporeal, Inc. |
Renal Solutions, Portions of the Allient Sorbent Hemodialysis System, Operator Manual Model 1500, 2008, Chapter 3, 3-31 to 3-70. |
Renal Solutions, Portions of the Allient Sorbent Hemodialysis System, Operator Manual Model 1500, 2008, Chapters 1 to 2. |
Renal Solutions, Portions of the Allient Sorbent Hemodialysis System, Operator Manual Model 1500, 2008, Chapter 3, 3-2 to 3-30. |
Renal Solutions, Portions of the Allient Sorbent Hemodialysis System, Operator Manual, 2008, Chapters 1 to 2. |
Renal Solutions, Portions of the Allient Sorbent Hemodialysis System, Operator Manual, 2008, Chapter 3. |
Renal Solutions, Portions of the Allient Sorbent Hemodialysis System, Operator Manual, 2008, Chapter 4, 4-1 to 4-33. |
Renal Solutions, Portions of the Allient Sorbent Hemodialysis System, Operator Manual, 2008, Chapter 4, 4-34 to 4-69. |
Renal Solutions, Portions of the Allient Sorbent Hemodialysis System, Operator Manual, 2008, Chapter 5. |
International Search Report for PCT/US10/20698, Xcorporeal, Inc., dated Jun. 16, 2010. |
Renal Solutions, Inc., Portions of 510(k) Allient Sorbent Hemodialysis System (Sections A-I), Dec. 17, 2004. |
Renal Solutions, Inc., Portions of 510(k) Allient Sorbent Hemodialysis System (Allient Main Controller Software Architecture Overview), Renal Solutions, Inc., Dec. 17, 2004. |
Renal Solutions, Inc., Portions of 510(k) Allient Sorbent Hemodialysis System (Sections M.3 and M.4), Renal Solutions, Inc., Dec. 17, 2004. |
Renal Solutions, Portions of the Allient Sorbent Hemodialysis System, Home User Manual, 2006, Chapters 1-3. |
Renal Solutions, Portions of the Allient Sorbent Hemodialysis System, Home User Manual, 2006, Chapters 4. |
Renal Solutions, Portions of the Allient Sorbent Hemodialysis System, Home User Manual, 2006, Chapters 5 to end. |
International Preliminary Report on Patentability for PCT/US2009/059907, dated Apr. 15, 2010, Fresenius Medical Care Holdings, Inc. |
International Search Report for PCT/US2009/059907, dated Apr. 15, 2010, Fresenius Medical Care Holdings, Inc. |
Timby et al., Introductory Medical-Surgical Nursing, Lippincott Williams Wilkins, Ninth Edition, Chapter 28, p. 433. |
International Search Report PCT/US08/85062, dated Mar. 20, 2009, XCorporeal, Inc. |
International Search Report PCT/US10/29500, dated Jul. 20, 2010, XCorporeal, Inc. |
Number | Date | Country | |
---|---|---|---|
20100140149 A1 | Jun 2010 | US |
Number | Date | Country | |
---|---|---|---|
61109834 | Oct 2008 | US |