The present invention relates to pre-cast concrete articles, and in particular to pre-cast concrete steps that can be used at the entrance to a home or other building structure.
Typically, present-day concrete steps are molded or formed as a one-piece unit; at a factory or central work site, and are delivered in that form to the job site for installation on a building. These one-piece units are quite heavy, e.g., 2,000 pounds or more, and they require a crane or other heavy equipment to lift and move them to the proper location. In many cases it is not practical to bring the heavy equipment to the location where the steps are to be installed, and this can create a large additional expense. Also, most manufacturers produce only a limited variety in terms of style and size, i.e., height and width of the precast steps, and the selection may or may not include steps that are correct for the given building. Further, the steps are limited in available designs, surface textures, or other features that a customer may want for the project.
In order to address these shortcomings, the inventor herein is proposing a modular system of assembling pre-cast concrete steps on-site, using pre-fabricated side wall panel modules, riser modules, tread modules, and platform modules. These pre-cast concrete modules are designed to weigh not more than 250 pounds, preferably about 200 pounds each, or less, so that one or two installation workers can easily carry each module from a truck bed to the installation location. These pre-cast panel modules, tread modules, riser modules, etc. can have any desired surface texture (e.g., natural rock finish, smooth finish, sand finish, etc.) and in the customer's choice of color or style (e.g. bull-nose treads). By using more or fewer side panels the side walls of the steps can be made higher (with more steps) or lower (with fewer steps) and can have a long or short platform behind the top step. A third side panel wall, identical to the left or right side walls, can be placed between the two side walls as a support for wider risers and treads, i.e., supporting longer spans and permitting construction of extra-width steps.
The steps can be installed using internal brackets, bracing, and doweling, to make the steps suitable for long service. The modular system makes it possible to replace worn or damaged side panels, risers, or platform modules, rather than replacing an entire step unit.
The modular precast concrete steps that maybe constructed according to the main principles of this invention, are shown in the attached drawing figures. This type of modular step unit allows anyone to assemble it, with any desired amount of rise and at any width, and with or without a platform.
Riser heights can be made shorter than standard to allow for different building codes or to accommodate elderly persons. Greater widths can be obtained by adding one or more center supports, in the form of an additional side wall unit to decrease the span for the risers and platforms. Railings can be bolted to the top of the treads and the platforms. Most or all the individual modules do not exceed 250 pounds, and can be handled by two persons.
Modular components can be doweled and aligned with or without a āVā or ship-lapped joint. The modules can be joined using a standard mortar, but could be permanently glued with a construction adhesive. Alternatively, the modules maybe held together using dowels and bolts, so that the stair unit can be disassembled (at least in part), e.g., to repair or replace a damaged stair tread or wall panel.
The components can be reinforced with fiber and/or steel. The inner surfaces of the risers, treads, side wall panels, and platform panels can be embossed, i.e., recessed in places, so as to relieve some of the weight of the module without loss of strength.
Decorative designs may be incorporated into the surface of the side wall modules as well as treads, risers, e.g., stone, brick, stucco surfaces, etc., and these can be color treated as desired.
Cross bracing can be easily installed to align side wall panels and can give extra stability to higher units. Steel, plastic, or composite reinforcing plates can be used to align the components on larger units and achieve increased stability. In a preferred mode, the step unit is provided in the form of a kit that can be assembled on-site at a remote location away from the plant or factory, requiring only two persons to complete assembly and requiring only simple tools, such as a wrench, a hammer, a level, and a caulk gun.
The kit includes both a left pre-cast stepped sidewall and a right pre-cast stepped sidewall, each formed of one or more concrete wall panels, and each having a proximal or lower portion and a distal or higher portion which faces against the building. The stepped sidewalls define alternate vertical and horizontal edge surfaces for the risers and treads.
A pair of cross-brace members adapted for joining the left and right side walls within the distal portions thereof, and each of the cross-brace members has a foot member at each end thereof with a bolt hole therein to receive a threaded fastener. The cross-brace members of each pair are pivotally joined at a mid portion. The kit also includes a sufficient number of right angle brackets, each being in the form of a rigid plate with portions joined at a right angle bend, and each portion having a pair of bolt holes. The kit also includes a sufficient number of bolts or similar threaded fasteners, and a tube of construction adhesive that can be applied using a caulk gun.
In this arrangement the side walls each have a pair of screw anchors embedded therein at the proximal portion thereof, and a pair of screw anchors embedded at the distal portion thereof. The first riser module also has a pair of said screw anchors embedded at each end and to fasten the right angle brackets at the inside front corners where the proximal portions of said side walls join to the respective ends of said first riser member.
Once the cross-brace members and the first riser member have been installed, and the installation personnel have taken care to ensure that the structure is properly squared and leveled, the remaining riser members and tread members can be affixed to the side walls by applying the bonding agent onto the horizontal and vertical surfaces of the side walls and to the upper edges of the riser members.
As each of the concrete members weighs no more than 250 pounds, and many parts less than 25 pounds, the step can be assembled and completed using only two persons, and installation can be completed in an hour or less in many cases.
Thereafter, the concrete members can be treated with a protective coating, or can be stained to a desired cover. Also, rails can easily be installed on one or both sides.
The risers and side walls can be molded to have a shorter vertical distance between steps, so as to facilitate use by persons with motion disabilities or elderly persons.
The major features and advantages of this invention are as follows:
The steps can be customized for different size spaces and different size concrete slabs.
The panels can be joined with key-way joints or pinning. Pins or dowels can be used to secure the panels of the side walls. The side wall modules or sections can be bolted together using bolt plates to secure the modules to one another. X-bracing inside the step between the side walls help align the side walls.
Reinforcing ribs on treads, risers, and platform slabs strengthen these components or modules where needed, and recesses can be provided to reduce weight of the components without a loss in strength.
Brick, stone, or plain finishes are available for risers.
Different style of noses are available for the treads, e.g., chiseled stone, square, bullnose, etc. The treads may have different styles and finishes also, e.g., plain, broomed, stone, non-skid, etc.
Embossed indents or recesses relieve some of the weight of the modules, without compromising strength.
Sides, risers, treads, and platform slabs can be made at the factory or shop and shipped as a kit to the customer's property where the modules are assembled and installed. The parts are selected so the step unit is a custom fit. Each part is limited in weight so that the modules can each be carried by and installation team of two workmen.
The sides which define the stepped front edge or stringer for holding the risers and treads can be made of two or more panels, and can be held together using a concrete adhesive and/or mechanical bracing. Tread and riser can be formed as unitary panels, rather than separate riser panels and tread panels, such that they seat on the stepped edge of the side walls. Additional platform panels can extend the concrete porch steps back beyond the top step tread.
Higher, multiple deck concrete steps can also be constructed with several flights of steps and a deck or landing between flights.
Side rails can be easily installed on one or both sides of the step units.
Molded concrete foot pieces may be used to support the modular step unit on ground rather than on a poured concrete slab, where the unit will be less susceptible to frost heave.
As shown in
A footing piece 50 for supporting the side wall module or modules 14, where there is no poured concrete slab, is shown in
The step unit can be constructed on side from a kit containing the required stepped side walls, risers, treads, and reinforcing or bracing members such as X brackets or cross-braces and right angle brackets or clip angles, as shown e.g. in
In this particular example, there are left and right stepped sidewalls 14, 14 each with three vertical surfaces to accommodate risers and three horizontal surfaces to accommodate tread modules and platform modules. The kit then includes three risers including a first or lowest riser 18A and a pair of additional risers 18, 18, and three tread modules 20 as well a platform module 22. The hardware items included with the kit are an X-brace 32, a plurality of clip angles or right-angle brackets 52, and a quantity of bolts or similar threaded members 54 or pair of cross brace members 32 that are pivotally joined at their mid-portions with a rivet 33 or the like. Each of the cross brace members 32 has a foot 32A at each end with a bolt hole through it, as discussed in respect to
The installation procedure is straightforward, and can be completed within no more than about one hour. All the structural components supplied in the kit are steel or fiber-reinforced concrete, with the kit having the sidewalls, risers and treads sized and in the appropriate number for the given structure and the height of the door threshold where the pre-cast step is to be installed.
The unit may be installed on a concrete slab, or on prepared ground using termite blocks or the sidewall support feet 50 mentioned earlier. Preparation can include leveling the ground and adding a bed of crushed stone for good drainage.
The first step is to measure the doorway, and find the center of the door threshold, and mark it with a pencil. Then measuring from the center mark, the building should be marked at locations corresponding to the width of the step. That is, for a five-foot wide step, the marks should be place at 30 inches from the center mark, on each side. Then from those marks, marks need to be made at locations of the inside of the sidewalls, which for the preferred embodiment would be four inches in from the end marks. Then a line should be drawn vertically to the ground so to mark the locations of the sidewalls 14.
The next step is to lay down the left and right sidewalls in place, with the inside of the walls facing up so the screw anchors or threaded inserts 58 are available. At this time, the cross-brace member 32 is attached, first to the left side wall 14 by placing bolts 54 through the feet 32A of the cross-brace member into the threaded inserts 58 on that side. Then the left and right side walls are tipped up and the other end of the cross-brace member is affixed to the distal portion of the right side wall in the same fashion, affixing the right side feet 32A with bolts 54 into the two threaded inserts 58. Then these bolts can be tightened as needed. AT this point, the two sidewalls 14 should be aligned with the marks for the inside of the two sidewalls.
Now, the lowest or first riser 18A is placed at the front vertical edges of the two sidewalls 14, and this is bolted in place using the clip angles or right-angle brackets 52, one at each side, and affixing these with bolts 54 into the threaded inserts 58 at the front part of the side walls and at the ends of the riser 18A.
Using a tape measure the distance diagonally from the distal end of each side wall to the front or proximal end of the sidewall or to the front of the top horizontal surface of the other sidewall is measured. The front riser and sidewalls can be moved left or right as needed until the two measurements are equal, and the sidewalls are properly square to the building and to one another.
Now the two sidewalls can be made level, left to right, as need be using shims (provided in the kit) or other leveling means, and a downward slope of about one-half inch back to front can be established for proper drainage of rainwater. After this the sidewalls are now ready for installation of the remaining risers 18 and the treads 20.
The second riser, and then the remaining treads and risers are installed loose (without cement) as a trial to ensure that the components will properly fit with one another. If this is satisfactory, the risers and treads are removed, and the fixed installation begins.
Using a caulk gun containing the tube 56 of construction adhesive, a bead of the adhesive is applied onto the flat upper surface at the front end of each side wall 14, and onto the top edge of the lowest riser 18A. The construction team now lays the first of the treads 20 on these surfaces, and adjusts the position as necessary to ensure that it is properly overlaying the first riser 18A.
The second riser is installed by first applying a bead of adhesive near the back edge of the first tread 20 and onto the inside edge of the next two vertical surfaces of the sidewalls 14. Then the second riser 18 is applied and is adjusted as needed for proper alignment, and is pressed against the beads of adhesive.
These steps are repeated until the uppermost riser has been installed.
Then starting at the distal or building end, a bead of adhesive is applied to the upper surfaces of the two sidewalls 14 and a tread 20 or platform member 22 is installed and aligned with the marks on the building from the measuring procedure described above. A bead of adhesive is applied to the front edge of this tread or platform member, and to the horizontal top surfaces of the sidewalls, and the next tread or platform member is pushed into place and aligned. This is repeated as necessary until all of the tread members have been installed and the installation is complete. Rails can be installed as needed. A sealer or stain maybe applied, as desired.
As usual, a de-icer should never be used with any concrete product.
After installation, sand or crushed stone may be added at the base of each of the sidewalls for long-term stability.
While this embodiment employs elements cast of reinforced concrete, it is possible that at least some of these modules may be made of a composite material, e.g., including fiber and/or tough plastic materials, or may be made of quarried stone. The outer or visible surfaces can be textured as desired, and may be made in any desired color to suit the building or other components of the installation.
An extra-wide step, e.g., up to ten feet in width, can be constructed in this fashion with the addition of a stepped center wall, as depicted, e.g., in
While the invention is described in terms of a preferred embodiment, the invention is not limited only to that embodiment, but rather many modifications and variations are possible without departing from the main spirit and principles of the invention.
This is a continuation-in-part of Ser. No. 15/386,002, filed Dec. 21, 2016, pending, and claims priority under 35 U.S.C. 119(e) of provisional patent application Ser. No. 62/295,529, filed Feb. 16, 2016, the disclosures of which are incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
62295529 | Feb 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15386002 | Dec 2016 | US |
Child | 15704884 | US |