Structural composites are increasingly popular alternatives to traditional construction materials. Engineered wood/cellulosic (EWC) products, a type of structural composite, are typically manufactured by binding strands of wood or vegetable fiber with an adhesive under pressure. Sawmill scraps and wood that is structurally weak in its natural state can be used to make EWC products that are lighter and/or stronger than natural wood. Such products can be manufactured in a variety of sizes and configurations tailored to the end use. Some EWC products, such as glue laminated timber (glulam) and cross-laminated timber (CLT), may be used in place of natural lumber and steel.
EWC products may reduce demand for large logs from older-growth trees and provide opportunities to use smaller trees more efficiently. However, in some cases these benefits may be offset by higher manufacturing costs and the potential environmental impacts of manufacturing processes.
Embodiments will be readily understood by the following detailed description in conjunction with the accompanying drawings. Embodiments are illustrated by way of example and not by way of limitation in the figures of the accompanying drawings.
In the following detailed description, reference is made to the accompanying drawings which form a part hereof, and in which are shown by way of illustration embodiments that may be practiced. It is to be understood that other embodiments may be utilized and structural or logical changes may be made without departing from the scope. Therefore, the following detailed description is not to be taken in a limiting sense, and the scope of embodiments is defined by the appended claims and their equivalents.
Various operations may be described as multiple discrete operations in turn, in a manner that may be helpful in understanding embodiments; however, the order of description should not be construed to imply that these operations are order dependent.
The description may use perspective-based descriptions such as up/down, back/front, and top/bottom. Such descriptions are merely used to facilitate the discussion and are not intended to restrict the application of disclosed embodiments.
The terms “coupled” and “connected,” along with their derivatives, may be used. It should be understood that these terms are not intended as synonyms for each other. Rather, in particular embodiments, “connected” may be used to indicate that two or more elements are in direct physical or electrical contact with each other. “Coupled” may mean that two or more elements are in direct physical or electrical contact. However, “coupled” may also mean that two or more elements are not in direct contact with each other, but yet still cooperate or interact with each other.
For the purposes of the description, a phrase in the form “A/B” or in the form “A and/or B” means (A), (B), or (A and B). For the purposes of the description, a phrase in the form “at least one of A, B, and C” means (A), (B), (C), (A and B), (A and C), (B and C), or (A, B and C). For the purposes of the description, a phrase in the form “(A)B” means (B) or (AB) that is, A is an optional element.
The description may use the terms “embodiment” or “embodiments,” which may each refer to one or more of the same or different embodiments. Furthermore, the terms “comprising,” “including,” “having,” and the like, as used with respect to embodiments, are synonymous.
In exemplary embodiments, a computing device may be endowed with one or more components of the disclosed apparatuses and/or systems and may be employed to perform one or more methods as disclosed herein.
Embodiments of a modular press suitable for use in the manufacture of EWC products are described herein. In various embodiments, a modular press may include one or more frame modules coupled together in series to form a press frame. Each frame module may have a generally planar body supported at opposite ends on a corresponding pair of bases, an interior edge that defines an opening, and an upper and a lower platform coupled to corresponding portions of the interior edge, respectively, such that the platforms extend through the opening generally perpendicular to the plane of the body. Collectively, the interior edge and the upper and lower platforms may define an aperture through which workpieces can be inserted for pressing. The aperture may have a middle portion that extends between the adjacent outer faces of the upper and lower platforms and end portions defined by the interior edge of the body. In various embodiments, the end portions of aperture may be curved.
In some embodiments, each of the end portions may be defined by a multiradial curve, such as a continuous, discontinuous, or mirror multiradial curve. As used herein, the term “multiradial curve” means any curve that includes two or more circular arcs, at least some of which have different radii, that are joined end-to-end. The term “continuous multiradial curve” means a curve that includes two or more circular arcs of different radii, joined tangentially without reversal of curvature. The term “discontinuous multiradial curve” means a curve that includes two or more circular arcs, at least some of which have different radii, and at least some of which are joined non-tangentially (i.e., joined at some point that is not along a common tangent). The term “mirror multiradial curve” means a multiradial curve that is symmetrical about a plane.
A platen assembly may be coupled with some or all of the frame modules. The platen assembly may include a platen disposed within the aperture and a first actuator system operable to move the platen vertically between a raised position and an intermediate, or pre-engagement, position. The platen assembly may further include a second actuator system with actuators disposed between the platen and the upper platform. The second actuator system may be operable to force the platen downwardly from the intermediate position to an engagement position to thereby press a workpiece between the platen and the lower platform.
In various embodiments, a modular press may include a transport system that is selectively operable to move workpieces into, and through, the aperture. Optionally, the transport system may include a plurality of driven conveyor rolls disposed between the lower platforms of adjacent frame modules and a third actuator system selectively actuable to raise and lower the conveyor rolls relative to the lower platform.
In some embodiments, some or all of the actuator systems may be pneumatic actuator systems. The first actuator system may include one or more air bags supported on a body/upper platform, a beam supported on the air bags, and a pair of rods disposed through opposite ends of the beam. One end of the rods may be connected to the platen, and the opposite ends of the rods may be movably coupled to the corresponding body. The second actuator system may include a plurality of pneumatic hoses (e.g., water discharge hoses) supported on the platen and arranged generally parallel to a feed path axis that extends through a center of the apertures. The third actuator system may include a plurality of air bags that can be selectively inflated and deflated to raise and lower the conveyor rolls relative to the top surfaces of the lower platforms.
Any number of frame modules may be coupled together in series with corresponding platen assembly components (and optionally, with transport assembly components) to form a modular press of a desired length for processing EWC products of various dimensions. A modular press may be designed to apply a desired pressure (e.g., 150 psi or 100 psi), and/or pressures within a particular range (e.g., 150-250 psi, 100-200 psi, 100-150 psi, 50-100 psi, or 50-250 psi), to a workpiece for a desired length of time.
An embodiment of a modular press 100 with a plurality of frame modules 102 is illustrated by way of example in
Referring now to
In some embodiments frame module 102 may also include an abutment member 164 rigidly coupled to the platforms 110, 112 and/or body 104 (e.g., by welds or bolts) to provide a surface against which a workpiece can be positioned and/or pushed (
Abutment member 164 may be configured to provide an abutment surface that is substantially planar and orthogonal to the platforms 110, 112. Alternatively, abutment member 164 may be configured to provide an abutment surface that defines a desired profile, such as a splined, lapped, or other interlocking profile for joining workpieces together. Thus, in some embodiments the abutment surface may define at least one ridge, notch, groove, recess, or other such feature to be formed along the side of the workpiece.
Optionally, a frame module 102 may be provided with an abutment member 164 near one end of aperture 118 and a horizontal actuator (e.g., an air cylinder; not shown) near the opposite end of aperture 118, and the horizontal actuator may be selectively actuable to provide lateral force or “side squeeze” to force the workpiece laterally against abutment member 164. In various embodiments, abutment member 164 may include a plate member and one or more brackets or braces that are configured to be coupled to the upper surface of upper platform 110 and the bottom surface of lower platform 112 to hold the plate member in position while avoiding interference with platen 134 (see e.g.,
In various embodiments, frame module 102 may include one or more holes 166 through which air/fluid conduits, electrical wiring, or other components may be inserted. The number, shape, and dimensions of holes 166 may vary among embodiments. Optionally, body 102 may lack hole(s) 166.
Referring again to
Body 104 may be generally rectangular/ovoid and elongate, such that the width of body 104 is greater than the height. In some embodiments, body 104 may be generally rectangular with rounded corners. In various embodiments, some or all of the adjacent sides may be joined by rounded corners. Referring to
Body 104 may be substantially ovoid in some embodiments. Alternatively, body 104 may be generally rectangular with two or more rounded corners. The bottom edge of body 104 may be curved, with downward projections at opposite ends thereof, in some embodiments.
Aperture 118 may have any suitable shape or size. Typically, aperture 118 is elongate and defined collectively by upper platform 110, lower platform 112, and inner edge 116 of body 104. Aperture 118 is typically, but need not be, wider than upper plate 110 and/or lower plate 112. In some embodiments, aperture 118 may have a middle portion and two end portions. The middle portion may be disposed between upper and lower platforms 110, 112, such that the middle portion is defined by the outer face of each of the platforms 110, 112. The two end portions may be disposed at opposite ends of the middle portion, such that the two end portions are defined by the inner edge 116 of body 104, and optionally also by the ends of platforms 110, 112 (see e.g.,
Aperture 118 may be generally rectangular in some embodiments. Alternatively, the end portions of aperture 118 may be curved. In various embodiments, the end portions of aperture 118 and/or the outer contours of body 104 may be curved to distribute stress over a larger surface to thereby reduce or mitigate stress. The type, location, and degree of curvature may vary among embodiments.
In various embodiments, the end portions of aperture 118 and/or corresponding portions of the outer contour of body 104 may be curved. For example, in some embodiments the end portions of aperture 118 curve outwardly, such that the aperture 118 is wider along its longitudinal center (e.g., along Axis B-B of
In some embodiments, as illustrated for example in
The outer contour of the body 104 may be linear, curvilinear, or a combination of linear and curvilinear portions. For example, as shown in
In various embodiments, body 104 may be pivotably coupled to one or both of bases 106, 108, such as by a corresponding pivot member 124. Pivot member 124 may be disposed through body 104 (e.g., through the downward projections) and/or through the corresponding base 106 or 108. Optionally, as best shown in
Each of the upper and lower platforms 110, 112 may include one or more plates of steel or other suitable material. In some embodiments, one or both of upper and lower platforms 110, 112 may include two or more layers of material. For example, lower platform 112 may include a steel plate and one or more additional plates or layers disposed on the steel plate. Optionally, lower platform 112 and/or other components of modular press 100 may include a layer or coating of polytetrafluorocthylene (PTFE), perfluoroalkoxy (PFA), Fluorinated ethylene propylene (FEP), anodized aluminium, ceramic, silicone, or other non-stick and/or low-friction material to reduce adhesion of CWE materials to the press.
Couplers 122 may be, or may include, one or more through-holes through body 104. In some embodiments, a coupler 122 may include a projection in the outer periphery of body 104 and a through-hole through the projection. In other embodiments, couplers 122 may include other features integral to body 104, such as grooves, projections, textured surfaces, or other such features. Alternatively, couplers 122 may include ring bolts or other fasteners attached to body 104 by welding, threaded connections, or in any suitable manner.
Multiple frame modules 102 may be coupled together in series to form a press frame of a desired length. The upper platforms 110 may collectively form an upper platform assembly, and the lower platforms 112 may collectively form a lower platform assembly. A platen assembly may be coupled with some or all of the frame modules 102, as described below.
Referring first to
Platen 134 may be disposed below, and generally parallel to, upper platform 110, and may extend generally parallel to the feed path axis through some or all of the apertures 118 of frame modules 102. Platen 134 may be connected to a first end of rods 136, which may extend upwardly through corresponding portions of beam 138 to retaining members 140, which may be coupled to frame module 102 (e.g., affixed to body 104). The second ends of rods 136 may be slideable within retaining members 140. Beam 138 may be rigidly coupled to rods 136, and thus to platen 134, such that the beam, rods, and platen are vertically moveable as a single unit.
Actuators 142 may be coupled at opposite ends to beam 138 and corresponding supports 144. Supports 144 may be supported on upper platform 110 and/or rigidly coupled to body 104. Actuators 142 may be selectively extended or expanded to force beam 138 vertically upward, away from supports 144, to thereby lift platen 134 toward upper platform 110 and into a raised position. Actuators 142 may also be retractable and/or deflatable to thereby lower platen toward lower platform 112 and into an intermediate position, in which the platen is near or in contact with a workpiece on lower platform 112.
Actuators 146 may be disposed below upper platform 110 on supports 148, which may in turn be supported on an upper surface of platen 134. Actuators 146 may be selectively extendable or expandable to force platen 134 downwardly from the intermediate position to an engagement position, in which platen 134 is pressing against an upper surface of a workpiece on lower platform 112. Actuators 146 may also be selectively retractable and/or deflatable to thereby allow platen 134 to return to the intermediate position.
Actuators 142 and 146 may be pneumatic, hydraulic, electric, mechanical, or any other suitable type of actuator, alone or in any combination. Examples of such actuators include, but are not limited to, air cylinders, pneumatic cylinders, electric motor ball screws, planetary screws, springs, and eccentric wheels.
In some embodiments, as illustrated by way of example in
In some embodiments supports 148 may be channel members formed from sheets of steel or other suitable material(s) (
In operation, a press cycle may begin with actuators 142 extended, expanded, or inflated, such that platen 134 is in the raised position (
In some embodiments, modular press 100 and/or components thereof may be dimensioned and/or configured to accommodate a stack of two or more workpieces. For example, as shown in
Similarly, a modular press may be used to press either one full-length, full-width workpiece or multiple smaller workpieces in a single press cycle. For example, a modular press may be used to press two full-length, half-width workpieces placed side by side within the press, or two half-length, full-width workpieces placed end to end within the press, or four half-length, half-width workpieces, or other such combinations. Optionally one or more end spacers, side spacers, or some combination thereof may be placed within the press near the smaller workpiece(s) to help distribute the pressing force along the smaller workpiece(s). For example, a modular press may be used to press two full-length, one-third-width workpieces placed side by side within the press with a one-third-width spacer between them or along one side. Likewise, a modular press may be used to press two one-third-length, full-width workpieces placed end to end within the press with a one-third-length spacer between them. Many other combinations of workpieces and spacers are possible and will be readily apparent to those skilled in the art. Again, one or more dividers such as non-stick sheets or coatings may be used between/on workpieces to reduce adhesion of the workpieces to the press and/or to one another.
Optionally, bodies 104 and/or apertures 118 may be manufactured in sizes and shapes that are tailored to the dimensions of desired products. For example, if the desired products are 3.5 inches thick and 7.0 inches thick, bodies 104 and/or apertures 118 may be configured for use to press workpieces that are 7.0 inches thick, 14.0 inches thick, 21.0 inches thick, etc. In other words, bodies 104 and/or apertures 118 may be dimensioned to accommodate some multiple of a desired product dimension. In some embodiments, one or more dividers 158 may be placed onto or under a workpiece, or between workpieces, to reach a desired thickness for pressing. The length, width, thickness, and composition of dividers 158 may vary among embodiments.
Alternatively, the platen assembly may include a spacer 160 that can be removably coupled with platen 134.
Actuators 146 and/or 142 may be operable to move platen 134 among several defined vertical positions and to maintain platen 134 in any of those positions for a desired length of time. Alternatively, actuators 146 and/or 142 may be operable to move platen 134 to, and maintain platen 134 in, virtually any vertical position within a range. The range may include a maximum vertical height (e.g., with actuators 142 fully extended/expanded/inflated and actuators 146 fully retracted/deflated), a minimum vertical height (e.g., with actuators 146 fully extended/expanded/inflated and actuators 142 fully retracted/deflated), and all possible vertical heights between the maximum and the minimum vertical heights.
Referring now to
In various embodiments, platen 134, actuators 146, and/or supports 148 may be dimensioned for a press frame of a corresponding length. For example, platen 134 may include a single sheet of steel, or some other suitable material, that extends through all of the apertures 118 of the press frame 170.
In various embodiments, some or all of platen 134, actuators 146, and/or supports 148 may be modular. Press frame 170 may have two or more sections, each of which includes two or more consecutive frame modules 102, and platen 134 may be dimensioned to extend through the apertures 118 of the frame modules of one section. Thus, each of the sections may have a corresponding platen 134. For example, press frame 170 may include four consecutive sections, each with four frame modules 102, and each section may include a platen 134 dimensioned to extend through the four frame modules 102 of that section. Alternatively, platen 134 may be dimensioned to extend through two, three, five, six, or more than six frame modules 102. Similarly, platen 134 may be dimensioned to extend across some fraction (e.g., one half, one third, one fourth) of the width of the middle portion of aperture 118, and multiple platens 134 may be arranged side-by-side. Optionally, actuators 146 and/or supports 148 may be configured to match the dimensions of the corresponding platen(s) 134 on which they are supported. For instance, a modular press with four sections of four frame modules per section may include actuators 146 and supports 148 dimensioned to extend through, or substantially through, one section (four frame modules 102). This may allow the modular press to be lengthened or shortened to suit the end user's needs. Combinations are also possible, such as modular platens with full-length actuators/supports (e.g., for more convenient shipping/handling) or full-length platens with modular actuators/supports (e.g., for more convenient replacement or repair of those components, and/or to allow the press to continue operation if one or a few actuators is damaged).
Alternatively, platen 134, supports 148, and/or actuators 146 may be constructed/dimensioned to extend through all of the apertures 118 of the press frame 170.
In either case, in some embodiments the actuator(s) 146 of one platen 134 may be controllable independently of the actuator(s) 146 of another platen 134, such that fewer than all of the platens 134 are used to press a workpiece in a particular press cycle. For example, two modular presses (e.g., two modular presses 100), each with a corresponding actuator system, may be positioned end-to-end to form a longer modular press with an upstream section and a downstream section that are controllable independently of one another. As another example, a modular press may have two platens 134 positioned on opposite sides of the feed path axis, each with corresponding actuators 146 that extend through all of the apertures of the press frame, and the actuator(s) of one platen may be controllable independently of the actuator(s) of the other platen. Again, two such presses (each with two independently controlled platens) may be positioned end-to-end to form a longer modular press with two upstream sections and two downstream sections that are independently controllable. These examples are provided merely by way of illustration, and other combinations are also possible. Thus, in some embodiments full-length and/or full-width workpieces may be pressed by actuating all of the actuators 146, and shorter/narrower workpieces may be pressed by actuating only some of the actuators 146. In other embodiments, actuators 146 may be controlled collectively rather than independently, and workpieces of less than the full length/width may be pressed by using spacers of appropriate dimensions positioned along one or both ends/sides of the workpieces to offset the difference.
Referring again to
In a particular embodiment, actuators 142 and 146 may be pneumatic actuators, and air may be supplied to them via corresponding air conduits that extend through the press frame 170. Referring now to 11A-B, conduits 172 and 174 may be disposed within the through-holes 166a and connectors 168. Conduit 172 may be operatively coupled with actuators 142, and conduit 174 may be operatively coupled with actuators 146. Conduits 172 and 174 may be operatively coupled to a source of pressurized air, as described further below. Conduit 174 may extend from the outer face of the first frame module 102 to the opposite outer face of the last frame module 102. At one or both ends, conduit 174 may be connected to a series of additional conduits 176, 178, 180. Conduit 178 may extend laterally along the outer face of the frame module, and may be connected to conduit 174 by conduit 176. Each conduit 180 may be connected at opposite ends to conduit 178 and a corresponding one of the actuators 146. Collectively, conduits 174, 176, 178, and 180 may be operatively connected to the source of pressurized air, and may form a passage through which air can be introduced into, and/or removed from, actuators 146.
Conduits 174, 176, 178, and 180, and/or other conduits in any suitable number and arrangement, may be provided at only one end of modular press 100. Alternatively, such conduits may be provided at both ends of modular press 100, and/or at predetermined increments along the length of modular press 100 (e.g., every four frame modules), and each group of conduits may be coupled to the same or different source of pressurized air. This may allow actuators 146 to be filled with air from both ends of the actuators simultaneously, which may in turn provide faster inflation and deflation of the actuators. Optionally, valves 182 may be provided between and/or along any of the conduits to control airflow.
Similarly, conduit 172 may be coupled at one or both of its opposite ends to the source(s) of pressurized air via other conduits (not shown) in the same or similar manner. Additional conduits may operatively connect conduit 172 to actuators 142. Referring now to
In some embodiments, actuators 142 may be coupled to the end-most frame modules 102 of each section. Other arrangements are also possible, and in other embodiments actuators 142 may be coupled to the inner-most frame modules of each section, to each of the frame modules, to every second frame module, or arranged in any other suitable manner. Regardless, each actuator 142 may be operatively coupled with conduit 172. For example, conduit 172 may be provided with connectors 184 at locations that correspond to the locations of actuators 142 (
Optionally, conduits 172 and 174 may be coupled to corresponding outlets of a single source of pressurized air 188 (
As shown in
Some modular presses may include a transport system/assembly.
Referring now to
As shown in
Actuators 192 may be connected to a bottom portion of corresponding brackets 196, which may extend upwardly above actuators 192. The upper portion of brackets 196 may be coupled at opposite ends to a conveyor roll 130 and a support 198. Each bracket 196 may be pivotably coupled to the corresponding support 198, such as by a pivot member 200. Thus, each conveyor roll 130 may be coupled at its opposite ends to a pair of brackets 196 and a pair of actuators 192. Optionally, in embodiments with conveyor rolls upstream of the first lower platform 112 and/or downstream of the last lower platform 112, the brackets for the first or last conveyor roll may be pivotably coupled to a the same support 198 as the next conveyor roll, but in the opposite orientation, such that they pivot in the opposite rotational direction around the corresponding pivot members 200.
Actuators 192 may be actuable to reposition conveyor rolls 130 between a resting position (
In some embodiments, some of the conveyor rolls 130 may be coupled together in groups and driven and/or moved vertically as a unit. For example, conveyor rolls 130 may be coupled together in groups of two (or more) by corresponding roll frames 202 (
In various embodiments, actuators 142, 146, and 192 may be pneumatic actuators such as airbags or air hoses, and corresponding conduits 172, 174, and 190 may be coupled to corresponding outlets of a source of pressurized air, which may include pressure regulator/compensator mechanisms configured to control airflow into, and air pressure within, the actuators. An example of such a device is shown in
In operation, actuators 192 may be extended, expanded, or inflated to raise the conveyor rolls to the transport position. The conveyor rolls may be driven in the direction of workpiece flow to convey a workpiece thereon into the modular press. Once the workpiece has been conveyed the desired distance into the modular press, the rotation of the conveyor rolls may be stopped, and actuators 192 may be retracted or deflated to lower the conveyor rolls to the resting position to deposit the workpiece onto the lower platform 112 (see
In various embodiments, a modular press may have a first set of actuators operable to exert force against the platen relative to the press frame, and a second set of actuators operable to exert force against the platen relative to the upper platform. The modular press may be operated generally as follows.
One or more workpieces may be moved into the opening of the press with the platen (e.g., platen 134) in the raised position. In some embodiments, the workpiece(s) may be deposited onto conveyor rolls (e.g., conveyor rolls 130), and the conveyor rolls may be rotated until the workpiece is in the desired position within the modular press. With the workpiece in position, the conveyor rolls may be stopped and lowered to deposit the workpiece onto the lower platform (e.g., platform 112). In a particular embodiment, the conveyor rolls may be raised and lowered by operating a third set of actuators that are operable to exert force against the conveyor rolls relative to the press frame or underlying floor. Optionally, the third set of actuators may be a set of pneumatic actuators such as air bags (e.g., actuators 192). In some embodiments, the workpiece(s) may also be pushed laterally against an abutment member generally as described above.
The upper platen may be moved downwardly into the intermediate position by retracting/deflating the first set of actuators (e.g., actuators 142). The upper platen may be moved to the intermediate position before, during, or after placement of the workpiece(s) onto lower platform 112. In some embodiments, the first set of actuators is a set of pneumatic actuators operatively coupled with a source of pressurized air. Optionally, these pneumatic actuators may be air bags, and may be inflated/deflated from either end of the press or from both ends simultaneously.
The second set of actuators (e.g., actuators 146) may be extended or inflated to move the platen downwardly, from the intermediate position to the engaging position, into engagement with the workpiece. The second set of actuators may be controlled to maintain the desired pressure (e.g., 150 psi, 100 psi, etc.) against the workpiece for the desired length of time. The desired length of time may be determined based on factors such as workpiece dimensions, wood/fiber type, adhesive type (e.g., cold set adhesives), temperature, humidity, desired product, and the like. In some embodiments, the second set of actuators is a set of pneumatic actuators, and the air pressure may be monitored and adjusted either manually or automatically during this portion of the press cycle to maintain or adjust the desired downward force. In some embodiments, the second set of actuators may be pneumatic actuators. Optionally, these pneumatic actuators may be air hoses, and the hoses may be inflated from one end or from both ends simultaneously.
When the desired length of time has elapsed, the second set of actuators may be retracted or deflated to return the platen to the intermediate position. The first set of actuators may be extended or inflated to return the platen 134 to the raised position. The workpiece(s) may be moved out of the modular press once the platen is returned to the raised position, or while the platen is being returned to the raised position. In embodiments with conveyor rolls, the workpiece(s) may be moved out of the modular press by raising the conveyor rolls to lift the workpiece(s) above the lower platform and rotating the conveyor rolls until the workpiece has exited the press.
In various embodiments, a modular press may be constructed generally as follows. A plurality of generally planar bodies (e.g., bodies 104) may be formed, each with a corresponding aperture (e.g., aperture 118) that extends through opposite faces of the planar body. The bodies and/or apertures may have one or more curved portions. The bodies may be provided with corresponding upper and lower platforms coupled to the bodies along the upper and lower portions, respectively, of the apertures to form frame modules (e.g., frame modules 102). The bodies/frame modules may be coupled together in axial alignment to form a press frame, such that the apertures collectively define a feed path extending through the bodies. (Upper/lower platforms may be coupled to the bodies before or after the bodies are coupled to one another.) A platen may be movably coupled with the upper platform and the frame modules, such that the platen is coplanar with the feed path and the upper and lower platforms. A first actuator system may be coupled with the platen and the upper platform to selectively reposition the platen vertically relative to the bodies. A second actuator system may be coupled with the platen and the frame modules to selectively reposition the platen vertically relative to the upper platform. Optionally, a plurality of conveyor rolls may be coupled with the frame modules and disposed between adjacent ones of the lower platforms, and a third actuator system may be coupled with the conveyor rolls to selectively raise and lower the conveyor rolls. Some or all of the actuator systems may be coupled with a source of pressurized air or other pressurized fluid.
A modular press may be modified generally as follows. To extend the modular press, one or more additional frame modules may be coupled with the modular press, such that the existing press and additional frame module(s) are in axial alignment. Again, the upper and lower platforms may be coupled to the body(ies) before or after coupling the body(ies) to the existing press. A platen may be coupled to the additional frame module(s). The platen may be provided in addition to, or place of, an existing platen of the modular press. One or more of the existing actuator systems of the modular press may be extended by coupling additional actuators with the added frame module(s) and the existing actuator system. Alternatively, an existing actuator system that includes hoses (e.g., actuators 146) may be extended by replacing some or all of the existing hoses with longer hoses. Likewise, a modular press may be reduced in length by uncoupling one or more frame modules and corresponding components (e.g., corresponding actuators and/or conveyor rolls) from the modular press, and removing or replacing the platen with another of appropriate size. In some embodiments, modifying the modular press may include replacing an existing actuator system with a pneumatic actuator system or other type of actuator system.
Although certain embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that a wide variety of alternate and/or equivalent embodiments or implementations calculated to achieve the same purposes may be substituted for the embodiments shown and described without departing from the scope. Those with skill in the art will readily appreciate that embodiments may be implemented in a very wide variety of ways. This application is intended to cover any adaptations or variations of the embodiments discussed herein. Therefore, it is manifestly intended that embodiments be limited only by the claims and the equivalents thereof.
The present application is a continuation of U.S. patent application Ser. No. 17/518,276, which is a divisional of U.S. patent application Ser. No. 15/994,884, filed May 31, 2018, titled “MODULAR PRESS,” which is a divisional of U.S. patent application Ser. No. 15/154,642, filed May 13, 2016, titled “MODULAR PRESS,” which claims priority to U.S. Patent Application No. 62/162,642, filed May 15, 2015 and U.S. Patent Application No. 62/204,664, filed Aug. 13, 2015, both titled “MODULAR PRESS,” the entire disclosures of which are incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
62204664 | Aug 2015 | US | |
62162642 | May 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15994884 | May 2018 | US |
Child | 17518276 | US | |
Parent | 15154642 | May 2016 | US |
Child | 15994884 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17518276 | Nov 2021 | US |
Child | 18649530 | US |