This disclosure relates generally to inkjet imaging devices, and, in particular, to print bar assemblies in inkjet printers.
In general, inkjet printers include a plurality of printheads that are mounted to a print bar assembly frame. The frame is a unitary die cast structure having two sides with a plurality of bars or rods extending in parallel between the sides. Printheads are then mounted to carriers, which are mounted to the bars at particular positions to provide the appropriate pixel resolution for images generated by the printer. A print zone of a printer is the area within a printer where an ink image is formed for media passing through the printer. In some standard size printers, the print bar assembly is formed to produce images with an 8.5 inch, 24 inch, 36 inch, or 40 inch width. Each different image width requires a different die cast frame. These die cast frames are quite expensive and cannot be adapted to any width other than the print zone width for which the frame was cast. Having print bar assemblies that can be modified to accommodate different image widths would be beneficial.
In one embodiment a printer includes a print bar assembly that enables the assembly to be built with different widths without having to obtain different die cast frames. The printer includes a media transport configured to move media through the printer to form an ink image on the media, a first member having three linearly arranged receptacles, a second member having three linearly arranged receptacles, a first rod, a second rod, and a third rod. Each rod has a first end and a second end, the first end of each rod being positioned within one of the receptacles in the first member in a one-to-one correspondence and the second end of each rod being positioned within one of the receptacles in the second member in a one-to-one correspondence to enable the first, the second, and the third rods to extend parallel to one another from the first member to the second member. The printer also includes a first frame having a perimeter, a pair of flanges extending from a first side of the first frame and a third flange extending from a second side of the first frame, the second side of the first frame being opposite the first side of the first frame, each flange extending from the first frame having a hole in the flange, the first rod passing through the holes in the pair of flanges of the first frame and the second rod passing through the hole in the third flange of the first flange. A second frame in the printer has a perimeter, a pair of flanges extending from a first side of the second frame and a third flange extending from a second side of the second frame, the second side of the second frame being opposite the first side of the second frame, each flange extending from the second frame having a hole in the flange, the third rod passing through the hole in the third flange of the second frame and the second rod passing through the holes in the pair of flanges of the second frame. A first printhead is mounted within the first frame, and a second printhead is mounted within the second frame. A controller is operatively connected to the first printhead and the second printhead, and is configured to operate the first printhead and the second printhead to form the ink image for the media.
The manufacture of printhead assemblies for producing images of different widths has been facilitated by a modular print bar assembly. The modular print bar assembly includes a first member having three linearly arranged receptacles, a first actuator mounted to the first member between two of the linearly arranged receptacles and a second actuator mounted to the first member between two of the linearly arranged receptacles. The first actuator and the second actuator are not mounted between the same two linearly arranged receptacles. The assembly also includes a second member having three linearly arranged receptacles, and a first rod, a second rod, and a third rod. Each rod has a first end and a second end, the first end of each rod being detachably positioned within one of the receptacles in the first member in a one-to-one correspondence and the second end of each rod being detachably positioned within one of the receptacles in the second member in a one-to-one correspondence to enable the first, the second, and the third rods to extend parallel to one another from the first member to the second member.
For a general understanding of the present embodiments, reference is made to the drawings. In the drawings, like reference numerals have been used throughout to designate like elements. As used herein, the terms “printer,” “printing device,” or “imaging device” generally refer to a device that produces an image with one or more colorants on print media and may encompass any such apparatus, such as a digital copier, bookmaking machine, facsimile machine, multi-function machine, or the like, which generates printed images for any purpose. Image data generally include information in electronic form that are rendered and used to operate inkjet ejectors in one or more printheads to form an ink image on the print media. These data may include text, graphics, pictures, and the like. The operation of producing images with colorants on print media, for example, graphics, text, photographs, and the like, is generally referred to herein as printing or marking.
The term “printhead” as used herein refers to a component in the printer that is configured with inkjet ejectors to eject ink drops onto an image receiving surface. A typical printhead includes a plurality of inkjet ejectors that eject ink drops of one or more ink colors onto the image receiving surface in response to firing signals that operate actuators in the inkjet ejectors. The inkjets are arranged in an array of one or more rows and columns. In some embodiments, the inkjets are arranged in staggered diagonal rows across a face of the printhead. Various printer embodiments include one or more printheads that form ink images on an image receiving surface. Some printer embodiments include a plurality of printheads arranged in a print zone. An image receiving surface, such as a print medium or the surface of an intermediate member that carries an ink image, moves past the printheads in a process direction through the print zone. The inkjets in the printheads eject ink drops in rows in a cross-process direction, which is perpendicular to the process direction across the image receiving surface.
In an indirect printer, the printheads eject ink drops onto the surface of an intermediate image receiving member, for example, a rotating drum or an endless belt. A transfix roller is selectively positioned against the intermediate image receiving member to form a transfix nip. As a media sheet passes through the transfix nip in synchronization with the ink image on the intermediate image receiving member, the ink image transfers and fixes to the media sheet under pressure and heat in the transfix nip. The transfer and fixation of the ink image are well known to the art and are referred to as a transfix process.
In a direct printer, the printheads eject ink drops directly onto a print medium, for example, a paper sheet or a continuous media web. After ink drops are printed on the print medium, the printer moves the print medium through a nip formed between two rollers that apply pressure and, optionally, heat to the ink drops and print medium. One roller, typically referred to as a “spreader roller” contacts the printed side of the print medium. The second roller, typically referred to as a “pressure roller,” presses the media against the spreader roller to spread the ink drips and fix the ink to the print medium.
For a general understanding of the environment for the system and method disclosed herein as well as the details for the system and method, reference is made to the drawings. In the drawings, like reference numerals have been used throughout to designate like elements.
The printer 5 includes a controller 50 to process the image data before generating the control signals for the inkjet ejectors to eject colorants. Colorants can be ink or any suitable substance, which includes one or more dyes or pigments and is applied to an image receiving surface to form an ink image. The colorant can be black or any other desired color, and some printer configurations apply a plurality of different colorants to the media. The ink image can be formed on or transferred to media, which includes any of a variety of substrates, including plain paper, coated paper, glossy paper, or transparencies, among others, and the media can be available in sheets, rolls, or other physical formats.
The printer 5 is an example of a direct-to-web, continuous-media, inkjet printer that includes a media supply and handling system configured to supply a long (i.e., substantially continuous) web of media 14 of “substrate” (paper, plastic, or other printable material) from a media source, such as spool of media 10 mounted on a web roller 8. The media web 14 includes a large number (e.g. thousands or tens of thousands) of individual pages that are separated into individual sheets with commercially available finishing devices after completion of the printing process.
The printer 5 includes a media transport using one or more actuators, such as electric motors, to rotate rollers that are arranged along the media path that move the media web 14 in the process direction P at a predetermined linear velocity. In the printer 5, the media web 14 is unwound from the source 10 as needed and a variety of motors, not shown, rotate one or more rollers 12 and 26 to propel the media web 14 in direction P. The media conditioner includes rollers 12 and a pre-heater 18. The rollers 12 and 26 control the tension of the unwinding media as the media moves along a path through the printer. In alternative embodiments, the printer transports a cut sheet media through the print zone in which case the media supply and handling system includes any suitable device or structure to enable the transport of cut media sheets along a desired path through the printer. The pre-heater 18 brings the web to an initial predetermined temperature that is selected for desired image characteristics corresponding to the type of media being printed as well as the type, colors, and number of inks being used.
The media web 14 continues in direction P through the print zone 20 past a series of print bar assemblies 21A, 21B, 21C, and 21D. Each of the print bar assemblies 21A-21D effectively extends across the width of the media and includes one or more printheads that eject ink directly (i.e., without use of an intermediate or offset member) onto the media web 14. In printer 5, each of the printheads ejects a single color of ink, one for each of the colors typically used in color printing, namely, cyan, magenta, yellow, and black (CMYK).
The controller 50 of the printer 5 receives velocity data from encoders mounted proximately to the rollers positioned on either side of the portion of the path opposite the four printheads to calculate the linear velocity and position of the web as the web moves past the printheads. The controller 50 uses the media web velocity data to generate firing signals for actuating the inkjet ejectors in the printheads to enable the printheads to eject four colors of ink with appropriate timing and accuracy for registration of the differently colored patterns to form color images on the media. The inkjet ejectors actuated by the firing signals correspond to digital data processed by the controller 50. The digital data for the images to be printed can be transmitted to the printer, generated by a scanner (not shown) that is a component of the printer, or otherwise generated and delivered to the printer.
Associated with each print bar assembly is a backing member 24A-24D, typically in the form of a bar or roll, which is arranged substantially opposite the corresponding print bar assembly on the back side of the media. Each backing member positions the media at a predetermined distance from the print bar assembly opposite the backing member. The various backer members can be controlled individually or collectively.
Following the print zone 20 along the media path are one or more “mid-heaters” 30. A mid-heater 30 can use contact, radiant, conductive, and/or convective heat to control a temperature of the media. The mid-heater 30 brings the ink placed on the media to a temperature suitable for desired properties when the ink on the media is sent through the spreader 40.
Following the mid-heaters 30, a fixing assembly 40 applies heat and/or pressure to the media to fix the images to the media. The fixing assembly includes any suitable device or apparatus for fixing images to the media including heated or unheated pressure rollers, radiant heaters, heat lamps, and the like. In the embodiment of the
The spreader 40 can include a cleaning/oiling station 48 associated with image-side roller 42. The station 48 cleans and/or applies a layer of some release agent or other material to the roller surface. The release agent material can be an amino silicone oil having viscosity of about 10-200 centipoises. A small amount of oil transfers from the station to the media web 14, with the printer 5 transferring approximately 1-10 mg per A4 sheet-sized portion of the media web 14.
In printer 5, the controller 50 is operatively connected to various subsystems and components to regulate and control operation of the printer 5. The controller 50 is implemented with general or specialized programmable processors that execute programmed instructions. The instructions and data required to perform the programmed functions are stored in a memory 52 that is associated with the controller 50. The memory 52 stores programmed instructions for the controller 50.
In the controller 50, the processors, their memories, and interface circuitry configure the controllers and/or print zone to perform the printer operations. These components can be provided on a printed circuit card or provided as a circuit in an application specific integrated circuit (ASIC). Each of the circuits can be implemented with a separate processor or multiple circuits can be implemented on the same processor. Alternatively, the circuits can be implemented with discrete components or circuits provided in VLSI circuits. Also, the circuits described herein can be implemented with a combination of processors, ASICs, discrete components, or VLSI circuits. The controller 50 is operatively connected to the printheads in the printhead units 21A-21D. The controller 50 generates electrical firing signals to operate the individual inkjets in the printhead units 21A-21D to eject ink drops that form printed images on the media web 14.
In the previously known printers, such as the prior art printer 5 shown in
An exploded view of a modular system for mounting a printhead to a print bar assembly is shown in
The printhead 124 is mounted to the printhead plate 128 by two spring-loaded screws 152 provided on opposite sides of the printhead. These screws 152 are received within threaded receptacles 156 in the printhead plate 128. The printhead plate 128, which is also made of aluminum, is attached to the frame 132 by biasing members 160, such as the springs shown in
At the opposite corner of the frame 132 on a diagonal from the stitch control mechanism 180 shown in
The assembly 210 of the printhead 124, printhead plate 128, and the frame 132 is shown in
An alternative arrangement of assemblies 210 is shown in
In printers in which the modular assembly 100 is used for mounting printhead assemblies 210, thermal energy in the print zone can affect the assembly 100. Specifically, rods 108 and the end members 104 can expand if the temperatures of the metals used to form these components reach appropriate temperatures. As the rods expand and lengthen, the assemblies 210 can move with the rods and affect the stitching between printheads. To address the issues arising from these phenomena, a link connects the flanges of adjacent frames. Specifically, as shown in
In operation, a plurality of rods 108 of different lengths are obtained and end members 104 are fabricated. Printhead plates 128 are mounted to frames 132 with the biasing member 160 and printheads 124 are mounted on the plates 128 with screws 152. The printheads 124 are leveled with screws 172. The printheads 124 are arranged in an appropriate array for the print zone being constructed and rods 108 are passed through flanges of frames 132 to hold the arrangement together. One end member 104 is positioned to receive the ends of the rods at one side of the arrangement and then another end member 104 is positioned to receive the ends of the rods at the opposite side of the assembly 100. The ends of the rods frictionally fit within the linearly arranged receptacles in the end members to enable the end members to be removed from the assembly 100 later. Links, such as links 250 and 254, are mounted to flanges to conjoin adjacent printheads on the assembly 100. The handles 116 of the two end members 104 are used to carry and position the assembly 100 in a printer where the assembly is mounted. The reverse of this procedure can be performed to disassemble the printhead array and install new rods of a different length to enable a different number of printhead assemblies to be arranged for a print zone of another width.
It will be appreciated that variations of the above-disclosed apparatus and other features, and functions, or alternatives thereof, may be desirably combined into many other different systems or applications. Various presently unforeseen or unanticipated alternatives, modifications, variations, or improvements therein may be subsequently made by those skilled in the art, which are also intended to be encompassed by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
5469199 | Allen et al. | Nov 1995 | A |
6123410 | Beerling et al. | Sep 2000 | A |
6250738 | Waller et al. | Jun 2001 | B1 |
6322206 | Boyd et al. | Nov 2001 | B1 |
7669965 | Silverbrook | Mar 2010 | B2 |
7918533 | Silverbrook et al. | Apr 2011 | B2 |
8556386 | Silverbrook et al. | Oct 2013 | B2 |
20120019592 | Chang | Jan 2012 | A1 |