The present disclosure relates generally to an implantable article that is particularly suitable for use as an artificial joint prosthesis and more particularly to a prosthesis having in part a tray that is supported by metaphyseal bone, such as the tibial component of a knee prosthesis.
Artificial joint prostheses are widely used today, restoring mobility to patients affected by a variety of conditions, particularly arthritis. The satisfactory performance of these devices can be affected not only by the design of the component itself, but also by the final placement and geometry of the implanted component, and the long-term fixation of the device. Improper placement or positioning of the device, an improper fit to the patient's anatomy, or an inadequate reconstruction of the bony anatomy can adversely affect the goal of satisfactorily restoring the clinical bio-mechanics and function of the joint.
Joint arthroplasty sometimes requires reconstruction of the patient's bony anatomy due to pre-existing anatomical defects and bone loss. This bone loss may be due to injury, previous reconstructive surgery, or other preexisting conditions. Successful joint arthroplasty, for example, in the knee, sometimes requires restoration of the bone anatomy through the use of implant devices that substitute for significant portions of the bones in the joint, for example, the proximal tibia. Due to the large variation in potential conditions that may be encountered during surgical reconstruction, one approach has been to design a joint replacement system with modular components that augment the surface replacement components to restore the natural alignment and limb length, while also providing the mechanical strength and stability needed for joint function.
The modular components described herein allow for intraoperative customization of the device to best meet the needs of the patient bone anatomy. A joint prosthesis is built up using modular components (also called “augment blocks”). This modular approach allows for many different potential configurations with a limited number of component part sizes. In this way one can accommodate a wide range of anatomical deficiencies and recreate the normal biomechanics for a well-functioning joint reconstruction.
One disadvantage of previous modular implant designs is the potential risk of material debris generation during service due to relative motion at the interfaces between components. The systems and methods disclosed here alleviate this problem by incorporating interlocking features between mating components in combination with a bolt for compressing and retaining the modular augment block or blocks. The horizontal flat surfaces of the mating blocks and base plate are located so as to insure direct contact at the interlocking features. This direct contact, and the static compressive force provided by the locking bolt, eliminates any spatial clearance or gaps between the mating components, creating a tight fit and minimizing the potential for relative motion between the components.
The modular augments are further improved by the incorporation of mirrored (anti-symmetric) features at the opposite horizontal surfaces. These anti-symmetric features allow the augment blocks to be stacked, with interdigitation of the locking features of adjacent (stacked) blocks, creating a solid and stable construct. The interdigitating features are compatible for all augment sizes which allows the mixing of different sizes of augment block when creating a stack. The sequential stacking of different sizes allows the creation of tapered geometries. For example, in the knee, such a tapered geometry allows use of both an appropriately sized tibial base plate for the mating femoral component, while at the same time providing a bone-facing augment that is appropriate for the supporting tibial bone. As more bone is lost or removed from the proximal tibia, the cross-sectional size of the tibia generally gets smaller than the size at the proximal metaphysis. By stacking augments of various sizes according to the present systems and methods, a practitioner may create a final construct that meets both the dissimilar sizing needs of the knee articulation and that of the remaining tibial bone.
A modular stem may be used with the same tibial tray. The loss of bone that is typical with revision knee surgery can require additional mechanical elements to adequately stabilize the tibial tray. A stem extension from the tibial tray is often used to engage the tibial diaphysis and thus provide mechanical support. This stem is typically attached or integral to the central area of the tibial tray, and is commonly straight, but may also be curved.
The modular stem portion may feature an external taper at its proximal end. The external taper serves as an attachment surface for optional augment blocks to substitute for missing or poor quality bone in the central portion of the recipient's proximal tibia.
It sometimes occurs during knee reconstructive surgery that the geometric center of the remaining proximal tibia is not in line with the geometric center of the tibial plateau. As a consequence, use of a straight tibial stem, centrally fixed in the tibial diaphysis, would result in the tibial tray being in a horizontally displaced location relative to the anatomical center of the knee joint. In some knee replacement systems this problem is solved by providing an “offset” tibial stem, either one piece or modular, that allows a horizontal offset of the long axis of the stem relative to the center of the tibial tray. These offset stems can be problematic in use due to the need to prepare the bone, typically by reaming or drilling, on an axis that is offset from the center of the tibial tray. Use of the present systems and methods avoids the need for additional bone preparation through the use of asymmetrically-sized augment blocks between the medial and lateral undersides of the tibial tray. With one or more larger augment blocks on one side and one or more smaller augment blocks on the other side, the geometric center of the distal end of the augment blocks is horizontally offset from the geometric center of the tibial tray.
Decoupling the tibial tray, stem, and augment block portions results in multiple distinct pieces and thereby offers further benefits. The modular tibial tray portion may be combined with the modular stem portion to allow sizing of the tibial tray portion independent from the stem portion. The modular tibial tray portion may also be combined with one or more modular augment block portions to allow sizing of the distal bone interface independent of the tibial tray portion. By varying tibial tray, stem, and augment block configurations a variety of clinical needs and situations can be addressed such as revision of knee that had undergone previous joint reconstruction without requiring a whole new tibial tray system. Many more clinical situations can be addressed by simply combining the appropriate stems and/or augment block portions with the tibial tray that is appropriate for the knee joint and the mating femoral component.
While the present disclosure exemplifies systems and methods in the context of the tibial component of a knee replacement prosthesis for cemented application, the systems and methods have numerous other applications. Examples include cementless tibial knee prostheses and other implantable prostheses such as ankles, fingers, and elbows, each of which may include a tray portion for resurfacing one or both sides of a joint. The present systems and methods are particularly advantageous in allowing optimal sizing and placement for use in an artificial knee and as such this description will reference a knee prosthesis.
The tibial tray portion (1) is independent of the tibial articular portion (9), the tibial augment block portions (2-4), and the stem portion (6). The augment block portions (2-4, 7) are attached to the tray portion (1) with an augment locking bolt portion (5). The complete tibial tray assembly may include from zero to many augment blocks on one or both (medial and lateral) sides of the tibial tray portion. Augment locking bolts (5) are in various lengths, each length to accommodate a specific thickness augment block and/or a specific total augment stack thickness. The most augment blocks on a single side would generally be about six, but there is no reason more that more than six augment blocks could not be stacked, provided an appropriate length augment locking bolt is included in the system.
The augment block portions include geometric features forming relief patterns on the horizontal (proximal and distal) faces that create a mechanical interlock with opposing relief patterns on the underside of the tibial tray portion (
Although each ridge in the first, or medial, relief pattern has a corresponding, complementary groove in the second, or lateral relief, pattern, each ridge is typically not exactly the same size as its corresponding groove. Instead, each ridge is typically slightly narrower and shallower than its corresponding complementary groove, as shown in
The mating interlocking features on the underside of the tibial tray portion are likewise geometrically reversed between the medial and lateral sides of the tray (
Each portion of the underside of the tibial tray may be substantially covered by a relief pattern, or may have some areas free of relief. The surfaces of the augment block may likewise be substantially covered with the relief pattern. The ridges and grooves that form the relief pattern may be linear, as shown in, e.g.,
The augment block portions can be stacked independent of augment block portion size and thickness. For all augment blocks, the interlocking features are spatially compatible and the through holes for the augment block locking bolt (5) are in axial alignment (
For augment blocks and/or the tray to be in register, it need not be the case that the outer edges are perfectly aligned. For example, the stacked augment blocks 2-4 shown in
The stem portion (6) is attached to the tray portion (1) with a stem locking bolt portion (8) and a tapered engagement between the outer surface of the distal extension of the tray portion and the inner surface of the proximal stem (
The stem portion can be straight, tapered, curved, or other shapes as appropriate to fit within the prepared tibial canal. The stem can have a surface and shape that is appropriate for use with bone cement, such as the hexagonal flat-sided distal geometry (
In another embodiment, the stem can have one or more keels (11) that can provide additional rotational stability to the tibial tray construct (
In another embodiment, the proximal end of the stem portion (6) includes an external tapered region that optionally can be used to attach other portions to the stem, such as a cone-shaped bone filling augment (12,
The assembly of the device is not limited temporally, in that assembly can occur before surgery, immediately prior to implantation, or during implantation. The device components can, for example, be assembled from a kit that includes a tray, one or more augment blocks, a first articulating member and a second articulating member. The articulating members can be sized and shaped to articulate with each other so as to model flexion in the replaced joint. The first articulating member can be affixed to the top of the tray, while the underside of the tray has lateral and medial relief patterns as described above. The augment blocks have opposed first and second surfaces having the same relief patterns as the medial and lateral portions of the underside of the tray, also as explained above. Multiple augment blocks may be used as shown in
The tibial tray (1), augment portions (2-4, 7, and 12), stem portion (6, 11), augment locking bolt portion (5), and stem locking bolt portion (8) of this device can be fabricated from any suitable high strength biocompatible material. Suitable materials include any of the titanium alloys, cobalt alloys, or stainless steel alloys. Preferred examples include Ti-6Al-4V or cobalt chrome alloy for the tibial tray, stem, augment block, and locking bolt portions.
This application claims the benefit of U.S. provisional application Ser. No. 61/442,988, filed Feb. 15, 2011, which is hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5047058 | Roberts | Sep 1991 | A |
5192327 | Brantigan | Mar 1993 | A |
5194066 | Van Zile | Mar 1993 | A |
5387241 | Hayes | Feb 1995 | A |
5702464 | Lackey et al. | Dec 1997 | A |
5824103 | Williams | Oct 1998 | A |
5916269 | Serbousek et al. | Jun 1999 | A |
6214052 | Burkinshaw | Apr 2001 | B1 |
6709461 | O'Neil et al. | Mar 2004 | B2 |
7175665 | German et al. | Feb 2007 | B2 |
7753960 | Cipolletti et al. | Jul 2010 | B2 |
8100977 | Felt | Jan 2012 | B2 |
8100982 | Heck et al. | Jan 2012 | B2 |
8764760 | Metzger et al. | Jul 2014 | B2 |
8900316 | Lenz et al. | Dec 2014 | B2 |
20040247641 | Felt et al. | Dec 2004 | A1 |
20050055097 | Grunberg et al. | Mar 2005 | A1 |
20060015184 | Winterbottom et al. | Jan 2006 | A1 |
20070179627 | Gustilo et al. | Aug 2007 | A1 |
20080051908 | Angibaud et al. | Feb 2008 | A1 |
20080119939 | Termanini | May 2008 | A1 |
20080133020 | Blackwell et al. | Jun 2008 | A1 |
20100114323 | Deruntz et al. | May 2010 | A1 |
Number | Date | Country |
---|---|---|
1607798 | Nov 1990 | SU |
03061522 | Jul 2003 | WO |
2006127848 | Nov 2006 | WO |
Entry |
---|
International Search Report and Written Opinion for PCT/US2012/025208, dated May 4, 2012. |
European Search Report dated Dec. 14, 2016 under Application No. EP 12747299.1. |
Australian Examination Report dated Jul. 20, 2015 under Application No. 2012217694. |
Number | Date | Country | |
---|---|---|---|
20120209391 A1 | Aug 2012 | US |
Number | Date | Country | |
---|---|---|---|
61442988 | Feb 2011 | US |