Priority is hereby claimed to U.S. patent application Ser. No. 10/824,007 filed on Apr. 14, 2004, U.S. patent application Ser. No. 10/155,851 filed on May 24, 2002, United States Provisional Patent Application Ser. No. 60/378,773 filed on May 8, 2002, and United States Provisional Patent Application Ser. No. 60/293,954 filed on May 25, 2001, the entire contents of which are incorporated herein by reference.
The present invention relates to racks, and more particularly to adjustable racks and rack systems for storing and displaying merchandise and other items, methods of assembling such racks and rack systems, and components of such racks and rack systems.
Conventional warehouse-type racks are increasingly used in applications for which they were not initially designed. Previously, such racks were commonly employed in storage and warehouse facilities to store and organize products in bulk form. However, for purposes of cost-savings and with the increased popularity of warehouse-type stores, many users now employ warehouse-type racks in retail establishments. Although such racks are strong, durable, and are capable of storing large quantities of product, a number of drawbacks exist in using warehouse-type racks to display and store merchandise (as well as for other purposes).
By way of example only, conventional warehouse-type racks are significantly limited in their adjustability—and hence the different shelving configurations possible—due to the relatively large sizes of the rack components. In many warehouse-type racks, stretchers extend laterally and in front-rear directions in order to connect vertically-extending uprights. Such uprights typically have a limited number locations to which the stretchers can be connected. This limitation is at least partially the product of the heavy-duty design of such racks, which are intended to carry much larger loads than relatively light-duty merchandise racks and displays found in most retail establishments.
As another example, warehouse-type racks are not well-suited to display and store merchandise and other product in more than a limited number of manners. Typically, warehouse-type racks have relatively large shelves each providing an open space upon which product can be stored. Although well-suited for storing large quantities of product in a limited amount of space, such racks are not well-suited for displaying merchandise, for efficiently storing and displaying smaller quantities of product (e.g., merchandise in unbundled form, individually-wrapped products, and the like), for permitting easy adjustment of shelving and displays, and for other purposes.
Some embodiments of the present invention provide structure that can be installed within a warehouse-type rack to convert such a rack for use as a merchandise and/or display rack. In this manner, warehouse-type racks can be provided with a significantly greater degree of adjustability to accommodate a greater number of shelving and/or product storage and display configurations.
In some embodiments, the structure installed within a warehouse-type rack includes one or more of the following components: secondary front-rear stretchers, secondary uprights connecting upper and lower secondary front-rear stretchers on the rack, stabilizer bars connecting secondary front-rear stretchers together, support spacers connecting secondary uprights and/or secondary front-rear stretchers, and display walls or panels directly or indirectly connected to the secondary uprights and/or secondary front-rear stretchers.
Preferably, the secondary uprights are adjustably connected to the secondary front-rear stretchers so that the secondary uprights can be secured in different positions within the warehouse-type rack. In some embodiments, the secondary uprights can be secured in different front-rear positions in the rack. In other embodiments, the secondary uprights can be secured in different vertical positions with respect to the secondary front-rear stretchers. In still other embodiments the secondary uprights can be secured in different front-rear positions and can be secured in different vertical positions with respect to the secondary front-rear stretchers.
The structure of the present invention preferably enables a user to convert a warehouse-type rack to a storage and display rack that is more suited for a retail environment, is better adapted for displaying different merchandise and other product, and/or has increased adjustability to meet the demands of different users and applications.
The present invention is further described with reference to the accompanying drawings, which show preferred embodiments of the present invention. However, it should be noted that the invention as disclosed in the accompanying drawings is illustrated by way of example only. The various elements and combinations of elements described below and illustrated in the drawings can be arranged and organized differently to result in embodiments which are still within the spirit and scope of the present invention.
As shown in
Front-rear stretchers can be connected in any conventional manner to the lateral stretchers, and can run perpendicularly or at any other angle with respect to the lateral stretchers 12. Still other types of stretchers can be employed as desired.
Typically, the uprights 10 are adjustably connected to either or both types of stretchers 12, 14. Adjustable connections between uprights 10 and stretchers 12, 14 can be accomplished in a number of different conventional manners. For example, the uprights 10 can have a series of apertures along all or part of their lengths into which pins, posts, keys, fingers, or other protrusions on the ends of the stretchers 12, 14 extend for connection to the uprights 10. Alternatively or in addition, conventional fasteners such as pins and mating apertures, threaded fasteners passed through either or both the uprights 10 and stretchers 12, 14, clamps, and interlocking flanges on the uprights 10 and stretchers 12, 14 can be employed. Still other manners of releasably and adjustably connecting the uprights 10 to either or both types of stretchers 12, 14 are conventional in nature and are not therefore described further herein.
In some types of racks, either or both types of stretchers 12, 14 are permanently connected to the uprights 10, such as by welding, brazing, riveting, or by forming the stretchers 12, 14 integrally with the uprights 10. In the illustrated preferred embodiment of
The heights of shelves in the racks described above are dictated by the connection location of the stretchers employed to support the shelves. In this regard, the heights of shelves are determined by the heights of the front-rear stretchers 14 if the shelves rest upon and are supported by the front-rear stretchers 14, and are determined by the heights of the lateral stretchers 12 if the shelves rest upon and are supported by the lateral stretchers 12. In the illustrated preferred embodiment for example, the warehouse rack shelves are only supported by the lateral stretchers 12. Therefore, in this embodiment, the location of the connections between the lateral stretchers 12 and the uprights 10 (e.g., the upright apertures to which the lateral stretchers 12 are connected) determines the heights of the shelves in the rack.
As discussed above, the relatively large size of the stretchers 12, 14 in a conventional warehouse-type rack significantly limits the adjustability and the available shelving configurations of the rack. This is true regardless of the manner in which either or both types of stretchers 12, 14 are adjustably connected to the uprights 10. In some embodiments of the present invention, the conventional warehouse-type rack is provided with structure that increases the adjustability to accommodate a greater number of shelving configurations. In the illustrated preferred embodiment for example, the structure employed for this purpose includes secondary front-rear stretchers 16 supporting secondary uprights 18. Preferably, the present invention employs one or more stabilizer bars 20 for retaining the secondary front-rear stretchers 16 in desired positions on the lateral stretchers 12 of the warehouse-type rack and for strengthening the structure of the present invention, one or more support spacers 22 for increasing lateral strength and rigidity of the secondary uprights 18 and/or for connection of other display structure to be supported by the secondary uprights 18, one or more display panels or walls 24 (to which merchandise display and support elements can also be connected in some embodiments), and one or more shelves 26 upon which merchandise can be displayed and supported. Various embodiments of the present invention can employ any number (including none) of these additional elements as desired.
In addition to providing a secondary product support and display structure for conventional warehouse-type rack systems, the present invention preferably enables a user to position merchandise in an increased range of vertical and horizontal positions within a warehouse-type rack. Most preferably, the conversion rack assembly of the present invention enables a user to locate merchandise display and support elements such as shelves, buckets, baskets, hangers, and the like at any number of desired vertical, lateral, and front-rear positions within a warehouse-type rack. In some preferred applications, a user is capable of locating such elements in any position within an area defined by two levels of stretchers 12, and by the front, rear, and sides of the warehouse-type rack. In other preferred embodiments, the user is capable of locating such elements at least within a range of positions in this area.
The conversion rack assembly of the present invention can preferably be installed, removed, and adjusted within a warehouse-type rack without disturbing the warehouse-type rack itself. This provides significant advantages over conventional warehouse-type racks and other rack systems by making installation, removal, and adjustment simple and fast. Also, the adjustability of the conversion rack assembly of the present invention is much greater than that of the larger warehouse-type racks within which it is installed, providing a user with the same or similar display and storage options as offered in lighter-duty retail-type display and storage rack systems.
Although the structure of the present invention can be permanently incorporated into a warehouse-type rack (i.e., integral with such a rack), a removable conversion rack assembly is preferred because it enables a user to purchase and use standard warehouse-type racks and to install conversion rack assemblies only on an as-needed basis. Another advantage of the present invention is the fact that the conversion rack assembly does not require a separate support structure. Instead, the conversion rack assembly of the present invention preferably relies upon the support and ground-contacting structure of the warehouse-type rack in which it is installed. This reduces the cost, complexity, and assembly time of the present invention.
With reference to
The secondary front-rear stretchers 16 in the warehouse-type rack can be retained in any number of desired positions along the lateral stretchers 12 in any conventional manner, such as by being bolted, clamped, or clipped to the lateral stretchers 12, by pin and aperture connections of the secondary front-rear stretchers 16 to the lateral stretchers 12 (e.g., pins, posts, fingers, or other protrusions on the ends of the secondary front-rear stretchers 16 removably received within apertures in the lateral stretchers 12 or vice-versa), by being received within recesses in the lateral stretchers 12, and the like.
In some alternative embodiments, the elements or structure used to retain the front-rear stretchers 16 in desired positions along the lateral stretchers 12 require no conventional fasteners and no tools to install. For example, the upper front-rear stretchers 16 in the rack assembly illustrated in
In some preferred embodiments, the secondary front-rear stretchers 16 are retained in desired positions by one or more stabilizer bars 20 connected to and between the secondary front-rear stretchers 16 (see
The ends of the stabilizer bar 20 are preferably received within apertures 30 in the sides of the secondary front-rear stretchers 16 (See
The stabilizer bars 20 can be releasably connected to the secondary front-rear stretchers 16 in a number of other conventional manners, such as by being bolted, clamped, snap-fit, or clipped thereto, by being attached to the secondary front-rear stretchers 16 with pin and aperture connections, and the like. One having ordinary skill in the art will appreciate that still other manners of releasably connecting the stabilizer bars 20 to the secondary front-rear stretchers 16 are possible, each one of which falls within the spirit and scope of the present invention.
In the illustrated preferred embodiment shown in
As described above, the conversion rack assembly of the present invention employs secondary uprights 18 supported by the secondary front-rear stretchers 16. With particular reference to
The ends of the secondary uprights 18 are preferably connected to the secondary front-rear stretchers 16 by a number of plates 33 (see
By their connection to the secondary front-rear stretchers 16 as described herein, the secondary uprights 18 can preferably bear the load of panels or walls 24 directly or indirectly connected to the secondary uprights 18 (described in more detail below), merchandise display and storage elements connected to the panels or walls 24 or otherwise directly or indirectly connected to the secondary uprights 18, and merchandise supported by such elements. The connections of the secondary uprights 18 to upper and lower secondary front-rear stretchers 16 are both preferably capable of bearing such loads. As a result, these loads are preferably not only supported from below by the lower front-rear stretchers 16, but also from above by the upper secondary front-rear stretchers 16. The preferred load-bearing connections between the secondary uprights 18 and the upper and lower secondary front-rear stretchers 16 therefore result in an increased load-bearing capacity of the conversion rack apparatus of the present invention. In other embodiments where only one of the connections between the secondary uprights 18 and the secondary front-rear stretchers 16 is capable of bearing significant load, the conversion rack apparatus may have a reduced load-bearing capacity. In some cases where a relatively large load-bearing capacity of the secondary uprights 18 is not needed, one of the ends of each secondary upright 18 need not necessarily be connected to a secondary front-rear stretcher 16.
Any number of plates 33 can be used to connect the end of a secondary upright 18 to a secondary front-rear stretcher 16. In the illustrated preferred embodiment, two plates 33 flanking the ends of each secondary upright 18 and flanking the secondary front-rear stretcher 16 are preferably employed. In other embodiments, one, three, or even more plates 33 can be used as desired.
The plates 33 function to create a reinforced joint between the secondary uprights 18 and the secondary front-rear stretchers 16. A releasable connection between the secondary uprights 18 and the secondary front-rear stretchers 16 (enabled, for example, by a releasable connection of the plates 33 to either or both of these elements) provides the conversion rack assembly of the present invention with significantly increased versatility for the arrangement of other components such as shelving and the like.
With regard first to the releasable connection and adjustability of the plates 33 on the secondary front-rear stretchers 16, this feature enables the secondary uprights 18 to be connected at multiple points along the length of the secondary front-rear stretchers 16 and thereby permits a user to select the desired depth of the merchandise storage and display area of the conversion rack assembly.
The plates 33 can be adjustably secured in multiple locations on the secondary front-rear stretchers 16 in a number of different manners. Most preferably, the secondary front-rear stretchers 16 have multiple apertures 34 along their lengths (see
Similarly, the plates 33 on either or both ends of the secondary uprights 18 are preferably releasably and adjustably connected to the secondary uprights 18 as mentioned above. This feature permits a user to adjust the location of the plates 33 with respect to the secondary uprights 18 in order to adjust for and accommodate variations in the vertical spacing (or height) between lateral stretchers 12 of the warehouse-type rack in which the conversion rack of the present invention is installed. If a particular vertical distance (or height) is desired between such lateral stretchers 12, adjustment of the plates 33 on the secondary vertical uprights 18 is an attractive and time-saving alternative to disconnecting, moving, and re-connecting the lateral stretchers 12 to different vertical positions in the warehouse-type rack. Preferably, the plates 33 at either or both ends of the secondary uprights 18 are provided with slotted apertures 38 (see
With continued reference to
The manner in which the secondary uprights 18 can be adjustably positioned with respect to the secondary front-rear stretchers 16 at least partially depends upon the type of connection employed between these elements. For example, in a releasable pinned or bolted connection (using aligned apertures in the plates 33 and the secondary uprights 18 and/or the secondary front-rear stretchers 16 as described above), multiple apertures along the lengths of the secondary front-rear stretchers 16 and/or the secondary uprights 18 are preferred as described above. However, where the ends of the secondary uprights 18 are received within apertures 40 in the secondary front-rear stretchers 16, multiple apertures 40 running along the secondary front-rear stretchers 16 are preferred. In still other embodiments employing other conventional fasteners such as clamps, some fasteners can be secured in an infinite or nearly-infinite range of positions on the secondary front-rear stretchers 16 or the secondary uprights 18. All such manners of releasably and adjustably connecting the secondary uprights 18 to the secondary front-rear stretchers 16 are considered to be encompassed by the present invention.
To increase the structural strength and stability of the conversion rack apparatus of the present invention and to provide more options for connecting merchandise display and storage elements within the conversion rack apparatus, optional support spacers 22 (
The ends of the support spacers 22 are preferably connected to adjacent secondary uprights 18 by being received within apertures 42 in the secondary uprights 18 as best shown in
In some preferred embodiments, the support spacers 22 are adjustably connected to the secondary uprights 18 and so can be connected at different locations along the height of the secondary uprights 18. By way of example only, the support spacers 22 can be connected to any of the apertures. 42 (at a number of different heights) on the secondary uprights 18 in the second preferred embodiment illustrated in
The secondary front-rear stretchers 16, secondary uprights 18, stabilizer bars 20 (if used), and support spacers 22 (if used) represent the framework of the conversion rack assembly upon which any number of different merchandise display and storage elements or fixtures can be mounted, preferably in a wide range of depths, heights, and lateral positions in a warehouse-type rack assembly. Although a wide variety of conventional merchandise display and storage elements and fixtures can be mounted on this framework (such as baskets, shelves, hangers, posts, panels, walls, etc.), only two will be described herein for purposes of illustration.
Panels or walls 24 can be connected to the conversion rack assembly by being connected to one or more support spacers 22, by being connected to one or more secondary uprights 18, and/or by being connected to one or more secondary front-rear stretchers 16. An example of panels or walls being connected to support spacers 22 is illustrated in
An example of panels or walls 24 being connected to secondary uprights 18 is also illustrated in
Another manner in which to secure panels or walls 24 within the rack assembly of the present invention is illustrated in
With continued reference to
The support spacers 22 and/or the vertical channels 44 are preferably secured to the secondary uprights in any of the manners just described for connecting the support spacers 22 to the vertical channels 44. More preferably however, conventional fasteners such as bolts, screws, or pins are inserted through apertures in the support spacers 22 and/or the vertical channels 44 aligned with apertures in the secondary uprights 18. In some highly preferred embodiments, multiple apertures in the support spacers 22 and in the vertical channels 44 permit the panel or wall 24 to be secured in different locations on the secondary uprights 18 as desired. For example, the wall 24 illustrated in
One having ordinary skill in the art will appreciate that a wall or panel 24 can be mounted to any number of secondary uprights 18 in a number of different manners, only some of which employ channels 44, laterally-extending support spacers 22, and other frame-type elements. Any other manner of directly or indirectly connecting a wall or panel 24 to the secondary uprights 18 can instead be employed as desired.
Because in some embodiments the secondary spacers 22 can be connected to the secondary uprights 18 at different heights and because the secondary uprights 18 permit connection of other elements thereto at different heights, the location of panels and other merchandise display and storage elements and fixtures can be further adjusted as desired by the user to provide a wide range of configurations to meet the needs or requirements of any number of retail environments.
Another example of merchandising display and storage elements that can be used in conjunction with the present invention is shelving. With reference to
Still other merchandising display and storage elements can be mounted in the conversion rack assembly of the present invention. Most preferably, these merchandise display and storage elements can be adjustably mounted as described above in a range of lateral, depth, and height positions in the warehouse-type rack, thereby providing existing warehouse-type racks with significantly increased flexibility and adaptability.
The various features and structures of the present invention as described above can be employed in any combination desired to result in rack assemblies having different degrees of simplicity, adjustability, and versatility. In the embodiment illustrated in
One having ordinary skill in the art will appreciate that other manners of interconnecting the secondary uprights 18 and the front-rear stretchers 16 can be employed and fall within the spirit and scope of the present invention. For example, the secondary uprights 18 can extend through apertures in the front-rear stretchers 16. Alternatively, the secondary uprights 18 can be received within notches, recesses, or other apertures located in the front-rear stretchers 16 (and vice-versa) defining other types of inter-engagement between these elements. Depending at least partially upon the type of inter-engagement between the secondary uprights 18 and the front-rear stretchers 16, these elements can be adjustable with respect to one another as desired. For example, the front-rear stretchers 16 in the illustrated preferred embodiment of
With continued reference to the rack assembly illustrated in
It should be noted that the same secondary upright 18 can be connected to any number of front-rear stretchers 16. In a two-level rack assembly, each secondary upright 18 can be connected to a top front-rear stretcher 16, a bottom front-rear stretcher 16, and (more preferably) both top and bottom front-rear stretchers 16. In other embodiments, a secondary upright can be connected to three or more front-rear stretchers 16, such as multiple front-rear stretchers 16 extending through apertures 48 at different vertical locations along the secondary upright 18. This ability to connect any desired number of front-rear stretchers 16 to the secondary uprights 18 significantly increases the modularity and versatility of the present invention. In these and other embodiments, the secondary uprights 18 need not terminate at the front-rear stretchers 16 to which they are connected. Instead, the secondary uprights 18 can extend above and/or below such front-rear stretchers 16, in some cases permitting attachment of further support spacers 22, stabilizer bars 20, panels or walls 24, shelves 26, other merchandise display and storage elements, and other structure and elements as desired. By way of example only, the secondary uprights 18 illustrated in
In some embodiments of the present invention, each of the secondary front-rear stretchers 16 extend between and are supported by lateral stretchers 12 of a warehouse-type rack. However, it should be noted that not all front-rear stretchers 16 need to have this relationship with the warehouse rack lateral stretchers 12. In some cases, less than all of the front-rear stretchers 16 are supported by the warehouse rack lateral stretchers 12.
For example, the upper front-rear stretchers 16 in the embodiment illustrated in
In those embodiments of the present invention in which less than all of the secondary front-rear stretchers 16 are directly supported by lateral stretchers 12 of the warehouse rack, the load carried by secondary front-rear stretchers 16 not supported in this manner is preferably carried by one or more other secondary front-rear stretchers 16 on the same secondary uprights 18. For example, and with continued reference to
Although a number of embodiments of the present invention employ secondary front-rear stretchers 16 that extend between and rest upon lateral stretchers 12 of a warehouse-type rack as described above and illustrated in the figures, the secondary front-rear stretchers 16 can also or instead be directly supported by the uprights 10 and/or the front-rear stretchers 14 of the warehouse-type rack. In this regard, the secondary front-rear stretchers 16 in some alternative embodiments can be connected to the uprights 10 and/or the front-rear stretchers 14.
An example of such an embodiment is illustrated in
In some applications, significant advantages can be achieved by attaching secondary front-rear stretchers 16 to the uprights 10 as described above. With continued reference to
Another advantage provided by embodiments of the present invention such as that illustrated in
The embodiment of the present invention shown in
Whether the inserts 52 (if employed) extend into the secondary uprights 18 and/or the support spacers 22, the inserts 52 can snugly fit into their mating apertures for a secure connection between the secondary uprights 18 and the support spacers 22. If desired, these elements can be further secured together by fasteners, welds, brazing, adhesive or cohesive bonding material, or in any other manner.
The rack assembly embodiment illustrated in
With continued reference to
In some preferred embodiments of the rack assembly illustrated in
Apertured flanges on the support spacers 22 provide a convenient manner in which to connect (and more preferably, adjustably connect) the support spacers 22 to the secondary front-rear stretchers 16. However, it will be appreciated by one having ordinary skill in the art that the support spacers 22 can be connected to the secondary front-rear stretchers 16 in a number of other manners. Also, the secondary uprights 18 can instead be connected to the secondary front-rear stretchers 16 in alternative embodiments to the rack assembly shown in
As described above, the secondary front-rear stretchers 16 illustrated in
In some embodiments, the secondary front-rear stretchers 16 illustrated in
As noted above, the secondary uprights 18 can be connected to the front-rear stretchers 14 of a warehouse-type rack rather than to secondary front-rear stretchers 16. However, in some embodiments, one or more secondary uprights 18 are connected to front-rear stretcher(s) 14 of the warehouse-type rack while one or more other secondary uprights 18 are connected to secondary front-rear stretchers 16. For example, the left upper and lower front-rear stretchers shown in
In the illustrated preferred embodiments, an entire bay of a warehouse-type rack is shown “converted” by the conversion rack apparatus of the present invention. However, it should be noted that any part of the warehouse-type rack can be converted in this manner. For example, a user may desire to assemble a conversion rack according to the present invention only in half, a third, or a quarter of a full bay of a warehouse-type rack. By selecting the number and placement of the secondary front-rear stretchers 16 and secondary uprights 18 and the lengths of the stabilizer bars 20, support spacers 22, and panels or walls 24 (if used), any portion of a bay of a warehouse-type rack can be converted as described above. In addition to the advantages also described above, this provides the user with still more flexibility in the use of warehouse rack space.
As used in the appended claims, the term “coupled” does not necessarily mean that one element is fastened, secured, or otherwise attached to another element. Without limitation, the term “coupled” includes relationships between elements in which one element rests upon, engages, contacts, or is in mechanical communication with another element.
The embodiments described above and illustrated in the figures are presented by way of example only and are not intended as a limitation upon the concepts and principles of the present invention. As such, it will be appreciated by one having ordinary skill in the art that various changes in the elements and their configuration and arrangement are possible without departing from the spirit and scope of the present invention as set forth in the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
865268 | Powell | Sep 1907 | A |
1169720 | Harris | Jan 1916 | A |
1736883 | MacDonald | Nov 1929 | A |
2276440 | Walsh | Mar 1942 | A |
RE24535 | Franks | Sep 1958 | E |
2895619 | Frazier | Jul 1959 | A |
2984363 | Lang et al. | May 1961 | A |
3072262 | Cassel | Jan 1963 | A |
3152670 | Selkregg, Jr. et al. | Oct 1964 | A |
3194407 | D'Altrui | Jul 1965 | A |
3463325 | Rogers et al. | Aug 1969 | A |
3519140 | Wellman, Jr. | Jul 1970 | A |
3545626 | Seiz | Dec 1970 | A |
3695456 | Lewis | Oct 1972 | A |
4078664 | McConnell | Mar 1978 | A |
4444322 | Lee | Apr 1984 | A |
4763579 | Cibulak | Aug 1988 | A |
4818044 | Dobry | Apr 1989 | A |
4955490 | Schafer | Sep 1990 | A |
5012938 | King | May 1991 | A |
5013100 | Zich | May 1991 | A |
5090579 | Major | Feb 1992 | A |
5160051 | Bustos | Nov 1992 | A |
5205421 | Bustos | Apr 1993 | A |
5257701 | Edelson | Nov 1993 | A |
5279430 | Benton | Jan 1994 | A |
5379905 | Bustos et al. | Jan 1995 | A |
5427255 | Nook | Jun 1995 | A |
5472103 | Merl | Dec 1995 | A |
5474412 | Pfeiffer et al. | Dec 1995 | A |
5477971 | Howard | Dec 1995 | A |
5593048 | Johnson | Jan 1997 | A |
5628415 | Mulholland | May 1997 | A |
5678702 | Menaged et al. | Oct 1997 | A |
5749481 | Miller | May 1998 | A |
5769247 | Merl | Jun 1998 | A |
5899035 | Waalkes et al. | May 1999 | A |
5918750 | Jackson | Jul 1999 | A |
6021613 | Reuter et al. | Feb 2000 | A |
6029833 | Yeh | Feb 2000 | A |
6164467 | DePottey et al. | Dec 2000 | A |
6260719 | Azzopardi et al. | Jul 2001 | B1 |
6286693 | Brown | Sep 2001 | B1 |
6561365 | Bustos | May 2003 | B2 |
6739463 | Wishart et al. | May 2004 | B2 |
6978906 | Wishart et al. | Dec 2005 | B2 |
Number | Date | Country |
---|---|---|
29803113 | Feb 1998 | DE |
29904707 | Mar 1999 | DE |
Number | Date | Country | |
---|---|---|---|
20070119808 A1 | May 2007 | US |