Modular retractor system

Information

  • Patent Grant
  • 11389151
  • Patent Number
    11,389,151
  • Date Filed
    Tuesday, December 1, 2020
    3 years ago
  • Date Issued
    Tuesday, July 19, 2022
    a year ago
Abstract
A system and method of positioning a spinal implant into an intervertebral space comprises the steps of: cutting an incision through the skin toward an intervertebral space between a L5 and S1 vertebra; inserting an uncoupled first, second and third retractor blade into the incision to pre-position the retractor blades prior to retraction; coupling the pre-positioned first retractor blade to a connector arm to connect the first retractor blade to a table arm; attaching a blade to blade connector and mini flex arm to couple the second blade to either the first blade or third blade; and wherein the three uncoupled blades, once pre-positioned and then coupled, the blades are retracted to open the incision and expose the vertebral bodies.
Description
FIELD OF THE INVENTION

The present disclosure relates to methods and devices for retracting tissue in a surgical procedure to allow access to the surgical site. The purpose of this Retractor System is to provide soft tissue retraction, allowing surgical access to the spine. More specifically, this invention is intended for use during Oblique (Anterior to Psoas) Lumbar Interbody Fusion Surgery at L5-S1 between the bifurcation. However, it also could be used in any surgical approach requiring soft tissue retraction.


BACKGROUND OF THE INVENTION

Retractor systems may be used in a variety of different surgical procedures to provide an opening through which the doctor may access the surgical site. In spinal surgeries, for example, a retractor system may be used to provide the surgeon with access to the patient's spine. The opening created by the retractor system may, for example, enable the doctor to insert surgical instruments into the body or enable visualization of the surgical site using X-ray. One typical retractor system may include a plurality of blades coupled to a retractor frame. In use, the blades may be inserted into an incision and then retracted to displace tissue surrounding the incision exposing the surgical site. To minimize trauma to the tissue, this tissue displacement should be refined and controlled. However, current retractor systems do not provide desired control of the distraction. More particularly, the devices currently in use are mechanically coupled so the surgeon has limited ability to feel the resistance at the blades or to rotate the blades affixed to the retractor arm independently. This limited control takes away the skilled surgeon's ability to finely adjust the movement of the retractor blades.


The disadvantage of these systems is that the frame is positioned first and then the retractor blades are placed. The position of the retractor blades is therefore limited by the position of the frame.


In the case of 2, 3, and 4 blade ring retractors, the retraction on soft tissue is done through rigid mechanisms that do not provide tactile feel. This increases the risk of damage to vessels and other soft tissue.


Thus, there is a need for improved methods and devices that can be used for retracting tissue to provide access to the surgical site.


SUMMARY OF THE INVENTION

A system and method of positioning a spinal implant into an intervertebral space comprises the steps of: cutting an incision through the skin toward an intervertebral space between a L5 and S1 vertebra; inserting an uncoupled first, second and third retractor blade into the incision to pre-position the retractor blades prior to retraction; coupling the pre-positioned first retractor blade to a connector arm to connect the first retractor blade to a table arm; attaching a blade to blade connector and mini flex arm to couple the second blade to either the first blade or third blade; and wherein the three uncoupled blades, once pre-positioned and then coupled, the blades are retracted to open the incision and expose the vertebral bodies.


One or more of the blades have threaded Steinmann pins and the method includes securing one of the blades to the vertebra. The uncoupled blades have a handle quick connect attached to pre-position the blade. The method further comprises detaching the handle quick connect once the blade is pre-positioned.


Once retraction is complete, the step of discectomy and end plate preparation is completed, and the method further has the step of implanting an implant. The implant is inserted using an inserter on an OLIF approach of about 25 degrees off a coronal plane. The implant is inserted without the use of an orthogonal maneuver. The implant when inserted using an approach 25 degrees off the coronal plane, the lordosis of the implant will be correctly aligned with the lordosis of the spine. The implant is inserted using a straight or articulating inserter. The articulating inserter allows the surgeon to adjust the angle of the inserter handle relative to the implant to adjust the trajectory of the implant prior to inserting into the disc space or after. The system is configured to build a rigid frame outside of the body after the blades have been properly positioned by hand and pinned to a vertebral body.


The surgeon has the flexibility to place the blades wherever they want without being limited by the rigid frame ensuring that the blades are placed perfectly every time based on unique anatomic structures while still providing a rigid frame. Placing the retractor blades by hand provides the surgeon with tactile feedback to help reduce the risk of vascular injury. The blade to blade fixation eliminates the need to hold one of the blades in place during the procedure. If two blade to blade connections are used, this eliminates the need for a second table arm and removes clutter from the sterile field.


DEFINITIONS

For convenience, certain terms employed in the entire application (including the specification, examples, and appended claims) are collected here. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It is to be understood that this invention is not limited to the particular methodology, protocols, cell lines or type of stem cell, constructs, additives, and reagents described herein. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims.


OLIF—or oblique lateral interbody fusion, is a less invasive approach to spinal fusion surgery in which the neurosurgeon accesses and repairs the lower (lumbar) spine from the front and side of the body (passing in a trajectory about halfway between the middle of the stomach and the side of the body). During an OLIF procedure, the surgeon uses a corridor between the psoas muscle and the peritoneum to access the spine. The psoas muscles connect the lower back to the thighs and enable movement and flexibility of the back, pelvis, legs, and hips. The peritoneum is the membrane that lines the abdominal cavity.


Psoas—The psoas is a deep-seated core muscle connecting the lumbar vertebrae to the femur. The psoas major is the biggest and strongest player in a group of muscles called the hip flexors: together they contract to pull the thigh and the torso toward each other.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be described by way of example and with reference to the accompanying drawings in which:



FIG. 1 is blade 1 shown in side, front and perspective views.



FIG. 2A is a first design option of blade 2 shown in side, front and perspective views.



FIG. 2B is a second design option of blade 2 shown in side, front and perspective views.



FIG. 3A is a first design option of blade 3 shown in side, front and perspective views.



FIG. 3B is a second design option of blade 3 shown in side, front and perspective views.



FIG. 4 is a perspective view of the combined blade system.



FIG. 5 shows various blade to arm connection mechanisms taken from a top view looking downwardly.



FIGS. 6A-6D show a connection mechanism being attached to a blade in sequential views.



FIGS. 6E-6H shows a fully seated blade to arm connection and various blade to blade connection mechanisms.



FIGS. 7A and 7B show side and top views respectively of the quick connect handle attached to a blade.



FIG. 8 shows a depiction of an OLIF implant specifically designed for an OLIF approach (approximately 25° off the coronal plane) being implanted.



FIGS. 9A and 9B show the OLIF implant may be inserted using a straight or articulating inserter respectively. The articulating inserter allows the surgeon to adjust the angle of the inserter handle relative to the implant. This may be used to adjust the trajectory of the implant prior to inserting into the disc space or after.



FIG. 10 shows a three blade retraction.





DETAILED DESCRIPTION OF THE INVENTION

There are 3 retractor blades 10, 20, 30 as part of the system, designated #1 Blade 10, #2 Blade 20, and #3 Blade 30. Each Blade will come in a range of lengths (approximately 10-20 cm). Each blade 10, 20, 30 can have optional retraction ends. FIG. 1 shows blade 10 with a flanged end 10A. FIG. 2A shows blade 20 with a flanged end 20A similar to blade end 10A or as shown in FIG. 2B showing a flared out enlarged end portion of the blade 20, but without the flanged end 20A. Blade 30 can have an inclined curved end 30A with a convex tip 30C shown in FIG. 3A and in FIG. 3B, the inclined curved end 30B has a concave tip 30D. As shown in FIG. 4, variations of these blade ends can be used to retract the soft tissue.


#1 Blade 10 is designed to be placed medially of the left common iliac vein, for a left sided up approach, or medially of the right common iliac vein, for a right sided up approach.


#2 Blade 20 is designed to be placed caudally of the bifurcation.


#3 Blade 30 is designed to be placed medially for the right common iliac vein, for a left sided up approach, or medially of the left common iliac vein for a right sided up approach. Optionally, #3 Blade 30 can include a slot for a light source, similar to slot 28 of blade 20.


A light source or shim may be placed down the T shaped channel or slot 28 of blade 20 as shown in FIG. 4.



FIG. 5 shows blades with various connection mechanisms as well as threaded Steinmann Pins 80 that may be used to secure and lag the retractor blades to the vertebral bodies.


Referring to FIGS. 6A through 6H, FIG. 6A shows the two connection points 12, 14, 22, 24 and 32, 34 per blades 10, 20, 30 respectively. A threaded fastener 42 secures the arm connector 40 to each respective blade 1, 20, 30. When the fastener 42 is tightened into threads 12A, 14A, 22A, 24A, 32A, 34A, the corresponding teeth 41 of the arm connector 40 are aligned with the teeth 11, 21, 31 of each blade 10, 20, 30 thereby fixing the arm connector 40 to the respective blade as shown in FIGS. 6B through 6D. In FIGS. 6E through 6H, the use of the min flex arm 70 is shown, the mini flex arm 70 couples the blades 10, 20, 30 at the blade connectors 50.


With reference to FIGS. 7 A and 7B, handle 65 is shown connected to the handle quick connect 60 which is attached to a blade 10, 20, 30.


Using a handle quick connect 60 attached to the blades, the surgeon will place #1 Blade 10 into the exposure and position as desired. A blade to arm connector 40 will then be used to connect #1 Blade 10 to a table arm. The handle from the handle quick connect 60 may be removed. The same will be done for #3 Blade 30. #2 Blade 20 will be inserted into the exposure and positioned as desired. Using a mini flex arm 70 and blade to blade connectors 50, #2 Blade 20 will be connected to either #1 Blade 10 or #3 Blade 30. The handle may be removed. A blade to blade connector 50 and mini flex arm 70 may be substituted for the blade to arm connector 40 and table arm for either #1 Blade 10 or #3 Blade 30.


Once retraction is complete, discectomy and endplate preparation will be completed. Next, an implant preferably specifically designed for the OLIF approach (approximately 25° off the coronal plane) will be implanted, as shown in FIG. 8. The OLIF implant 2 is designed to be inserted without the use of an orthogonal maneuver. When inserted using an approach 25° off the coronal plane, the lordosis of the implant will be correctly aligned with the lordosis of the spine.


The implant may be inserted using a straight or articulating inserter 200 as shown in FIGS. 9A, 9B. The articulating inserter 200 allows the surgeon to adjust the angle of the inserter handle relative to the implant. This may be used to adjust the trajectory of the implant prior to inserting into the disc space or after.


While the retractor system 100 with inserter 200 is design specifically for an OLIF approach at L5-S1 between the bifurcation, it can also be utilized for an OLIF approach at levels higher up in the lumbar spine. Furthermore, the retractor blades could be utilized for any surgical approach, spine or otherwise, that requires soft tissue retraction.



FIG. 10 shows an exemplary three blade retraction.


A particularly unique feature of this system 100 is the ability to build the rigid frame outside of the body after the blades have been properly positioned by hand and pinned to a vertebral body.


Additionally, the overall system 100 eliminates the orthogonal maneuver during implant insertion and gives the ability to dial in the trajectory of the implant relative to the inserter handle during an OLIF approach.


The advantage of this system is that the surgeon has the flexibility to place the blades wherever they want without being limited by the rigid frame. This ensures that the blades are placed perfectly every time based on unique anatomic structures while still providing a rigid frame.


Placing the retractor blades 10, 20, 30 by hand provides the surgeon with tactile feedback to help reduce the risk of vascular injury.


Blade to blade fixation eliminates the need for someone (typically a physician assistant) to hold one of the blades in place during the procedure. If two blade to blade connections are used, this eliminates the need for a second table arm and removes clutter from the sterile field.


The elimination of the orthogonal maneuver during implant insertion simplifies the procedure.


The ability to dial in the trajectory of the implant relative to the inserter handle during an OLIF approach allows the surgeon to correct the axial rotation of the implant relative to the disc space. This may be necessary due patient anatomy preventing an ideal approach angle.


Variations in the present invention are possible in light of the description of it provided herein. While certain representative embodiments and details have been shown for the purpose of illustrating the subject invention, it will be apparent to those skilled in this art that various changes and modifications can be made therein without departing from the scope of the subject invention. It is, therefore, to be understood that changes can be made in the particular embodiments described which will be within the full intended scope of the invention as defined by the following appended claims.

Claims
  • 1. A method of positioning a spinal implant into an intervertebral space comprising the steps of: cutting an incision through the skin toward an intervertebral space between an L5 vertebra and an S1 vertebra of a patient;inserting an uncoupled first retractor blade, second retractor blade, and third retractor blade into the incision;independently moving the first retractor blade, the second retractor blade, and the third retractor blade manually to retract tissues of the patient about the incision to pre-position the retractor blades in a retracted position;securing the retractor blades in the retracted position by: coupling the pre-positioned first retractor blade to a connector arm to connect the first retractor blade to a table arm; andattaching a first blade to blade connector to the second retractor blade, attaching a second blade to blade connector to the first retractor blade or the third retractor blade, and attaching a mini flex arm to the first blade to blade connector and the second blade to blade connector in order to couple the second retractor blade to the first retractor blade or the third retractor blade in the retracted position.
  • 2. The method of claim 1 wherein one or more of the blades include threaded Steinmann pins and the method includes securing one or more of the blades to the vertebra with one or more of the threaded Steinmann pins.
  • 3. The method of claim 1 wherein at least one of the retractor blades includes a handle attached with a handle quick connect in order to facilitate manually pre-positioning the at least one retractor blade.
  • 4. The method of claim 3 wherein the method further comprises detaching the handle quick connect once the at least one retractor blade is pre-positioned and secured in the retracted position.
  • 5. The method of claim 1 wherein once the retractors have been secured in the retracted position, performing steps of discectomy and end plate preparation.
  • 6. The method of claim 5 further comprises implanting an implant between the L5 vertebra and the S1 vertebra of the patient via an opening defined by the retractor blades secured in the retracted position.
  • 7. The method of claim 6 wherein if the implant is inserted using an inserter on an OLIF approach of approximately 25 degrees off a coronal plane of the patient, an axis in which lordosis of the implant is oriented will be in alignment with an axis in which lordosis of the spine of the patient is oriented.
  • 8. The method of claim 6, wherein the implant is inserted without the use of an orthogonal maneuver in which the implant is inserted along the coronal plane or the sagittal plane.
  • 9. The method of claim 8 wherein the implant is inserted using an OLIF approach approximately 25 degrees off a coronal plane of the patient.
  • 10. The method of claim 9 wherein the implant is inserted using an articulating inserter.
  • 11. The method of claim 10 wherein the articulating inserter allows the surgeon to adjust the angle of a handle of the inserter relative to the implant to adjust the trajectory of the implant.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Patent Application No. 62/939,143, filed Nov. 22, 2019.

US Referenced Citations (53)
Number Name Date Kind
5303694 Mikhail Apr 1994 A
5902233 Farley May 1999 A
5928139 Koros Jul 1999 A
5931777 Sava Aug 1999 A
5944658 Koros et al. Aug 1999 A
5984865 Farley et al. Nov 1999 A
7556600 Landry et al. Jul 2009 B2
7785253 Arambula Aug 2010 B1
7850608 Hamada Dec 2010 B2
7931589 Cohen et al. Apr 2011 B2
7946982 Hamada May 2011 B2
7981029 Branch et al. Jul 2011 B2
8114016 Lo Feb 2012 B2
8303499 Hamada Nov 2012 B2
8353826 Weiman Jan 2013 B2
8636657 Hamada Jan 2014 B2
8876904 Pimenta et al. Nov 2014 B2
8968363 Weiman et al. Mar 2015 B2
9095301 Hamada Aug 2015 B2
9451940 Spann Sep 2016 B2
9486199 Pimenta et al. Nov 2016 B2
9622732 Martinelli et al. Apr 2017 B2
9848862 Bass et al. Dec 2017 B2
10085854 Spann Oct 2018 B2
10130348 Cryder et al. Nov 2018 B2
10238375 O'Connell Mar 2019 B2
10278786 Friedrich May 2019 B2
10687830 Garcia-Bengochea et al. Jun 2020 B2
10959860 Spann Mar 2021 B2
20010037123 Hancock Nov 2001 A1
20010041828 Deckman Nov 2001 A1
20020099269 Martin et al. Jul 2002 A1
20050159651 Raymond et al. Jul 2005 A1
20080140085 Gately Jun 2008 A1
20110130793 Woolley Jun 2011 A1
20120010472 Spann Jan 2012 A1
20120271118 White Oct 2012 A1
20130023735 Brown et al. Jan 2013 A1
20130204262 Menendez Aug 2013 A1
20130345520 Hamada Dec 2013 A1
20140257039 Feldman Sep 2014 A1
20140350347 Karpowicz Nov 2014 A1
20150018628 Friedrich Jan 2015 A1
20150305731 Friedrich et al. Oct 2015 A1
20160081818 Waugh Mar 2016 A1
20160354073 Nel et al. Dec 2016 A1
20170014117 Capote Jan 2017 A1
20170296160 O'Brien Oct 2017 A1
20170333023 Adams Nov 2017 A1
20180042595 Tsubouchi Feb 2018 A1
20190029497 Mirza et al. Jan 2019 A1
20190105179 Spann Apr 2019 A1
20200015799 Tsubouchi Jan 2020 A1
Foreign Referenced Citations (1)
Number Date Country
202654170 Jan 2013 CN
Non-Patent Literature Citations (3)
Entry
International Search Report and Written Opinion dated Aug. 13, 2021 in PCT Application No. PCT/US2021/14677.
Office Action dated Nov. 5, 2021 in U.S. Appl. No. 17/155,848.
Office Action dated Feb. 1, 2022 in U.S. Appl. No. 17/155,903.
Related Publications (1)
Number Date Country
20210315563 A1 Oct 2021 US
Provisional Applications (1)
Number Date Country
62939143 Nov 2019 US