Not applicable.
The disclosure relates generally to rig mat systems for use in supporting equipment and personnel of an industrial operation. More particularly, the disclosure relates to rig mat systems for supporting equipment and personnel on hydrocarbon drilling rigs.
Rig mats are found in many industrial operations (e.g., drilling rig, construction site, etc.) and are often configured to support and distribute loads provided by the weight of equipment, machinery and personnel of the operation. Rig mat designs encompass many different styles and configurations. For instance, rig mats include plastic mats, hollow rig matting systems, access mats, rubber mats and steel frame mats. Steel frame mats may include a plurality of wooden beams supported by a steel frame. In this arrangement, the load (e.g., weight of industrial equipment) acts on the wooden beams, which are configured to transfer and share the bridge load with the steel frame.
In an embodiment, a mat assembly includes a beam including a first billet comprising a first stack of adjacently adhered wooden boards, wherein a plurality of the boards of the first stack comprise a groove extending into a first face of each board, and a second billet comprising a second stack of adjacently adhered wooden boards, wherein a plurality of the boards of the second stack comprise a tongue extending from a first face of each board, wherein the tongues of the second stack extend into and are adhered to the grooves of the first stack. This embodiment may also include a frame disposed about and coupled to the glulam beam. The frame may include two longitudinal channels, two horizontal channels coupled to the two longitudinal channels, forming a rectangular perimeter, an I-beam extending between and coupled to the two horizontal channels, wherein the height of the I-beam is less than the height of the two longitudinal channels. This embodiment may also further include a third billet comprising a third stack of adjacently adhered wooden boards, wherein a plurality of the boards of the third stack comprise a tongue extending from a first face of each board and a groove extending into a second face of each board, and a fourth billet comprising a second stack of adjacently adhered wooden boards, wherein a plurality of the boards of the fourth stack comprise a tongue extending from a first face of each board, wherein the tongues of the fourth stack extend into and are adhered to the grooves of the third stack. This embodiment may also include a plurality of straps extending between the longitudinal channels and coupled to the I-beam. Also, the first plurality of the boards of the first stack may be pressed together at a pressure of at least 125 pounds per square inch.
In another embodiment, a mat assembly includes a frame including two longitudinal channels, two horizontal channels coupled to the two longitudinal channels, forming a rectangular perimeter and an I-beam extending between and coupled to the two horizontal channels, wherein the height of the I-beam is less than the height of the two longitudinal channels. This embodiment also includes a glued and laminated beam disposed longitudinally between the I-beam and a longitudinal channel. This embodiment may also include a triangular gusset having an aperture extending therethrough and coupled to one horizontal channel and one longitudinal channel. This embodiment may also include a plurality of straps extending between the longitudinal channels and coupled to the I-beam. In this embodiment, the longitudinal channels may intersect the horizontal channels at a plurality of miter joints. Also, a longitudinal channel may have a curved edge with a radius of at least one inch. However, a longitudinal channel may have a curved edge with a radius that is approximately three times the size of the thickness of the longitudinal channel. Further, a longitudinal channel may have a curved edge with a radius that is approximately twice the size of the thickness of the longitudinal channel.
An embodiment of a mat system includes a plurality of mat assemblies, wherein each mat assembly comprises a plurality of wooden beams coupled to a frame comprising a gusset having an aperture extending therethrough, and a link assembly coupled to the plurality of mat assemblies, wherein the link assembly comprises a plurality of fasteners, wherein the fasteners of the link assembly extend through the gusset of each of the plurality of mat assemblies. In this embodiment, the link assembly may include a link frame having four elongate portions. Also, each elongate portion of the link frame may include an aperture extending therethrough and configured to receive one of the plurality of fasteners. This embodiment may also include a flexible bushing configured to secure the link assembly to a mat assembly. Also, the fasteners may be bolts.
For a detailed description of the preferred embodiments of the disclosure, reference will now be made to the accompanying drawings in which:
The following discussion is directed to various exemplary embodiments. However, one skilled in the art will understand that the examples disclosed herein have broad application, and that the discussion of any embodiment is meant only to be exemplary of that embodiment, and not intended to suggest that the scope of the disclosure, including the claims, is limited to that embodiment.
Certain terms are used throughout the following description and claims to refer to particular features or components. As one skilled in the art will appreciate, different persons may refer to the same feature or component by different names. This document does not intend to distinguish between components or features that differ in name but not function. The drawing figures are not necessarily to scale. Certain features and components herein may be shown exaggerated in scale or in somewhat schematic form and some details of conventional elements may not be shown in interest of clarity and conciseness.
In the following discussion and in the claims, the terms “including” and “comprising” are used in an open-ended fashion, and thus should be interpreted to mean “including, but not limited to . . . .” Also, the term “couple” or “couples” is intended to mean either an indirect or direct connection. Thus, if a first device couples to a second device, that connection may be through a direct connection of the two devices, or through an indirect connection via other intermediate devices, components, and connections. In addition, as used herein, the terms “axial” and “axially” generally mean along or parallel to a central axis (e.g., central axis of a body or a port), while the terms “radial” and “radially” generally mean perpendicular to the given axis. For instance, an axial distance refers to a distance measured along or parallel to the axis, and a radial distance means a distance measured perpendicular to the axis.
Referring to
Steel frame assembly 100 includes an outer perimeter frame 110 and two I-beams 130. Perimeter frame 110 includes two longitudinal steel channels 112 and two horizontal steel channels 114. Longitudinal channels 112 are welded to horizontal channels 114 at four miter joints 115. Longitudinal channels 112 include an inner surface 112a, an outer surface 112b and a pair of curved edges 112c that extend along the axial length of channels 112. Similarly, horizontal channels 114 include an inner surface 114a, an outer surface 114b and a pair of curved edges 114c that extend along the axial length of channels 114. Curved edges 112c and 114c are configured to facilitate the handling of rig mat assembly 10 via a forklift or other means. In this embodiment, edges 112c and 114c have an easy radius of approximately two or three times the thickness of channels 112 and 114. Also, in this embodiment channels 112 and 114 are formed from tubing and have an approximate thickness of ¼″ to ½″. In this embodiment, channels 112 have an approximate length of 12′ to 40′, an approximate flange width of 3″ and an approximate height of 3″ to 8″. Channels 114 have an approximate length of 4′ to 12′, an approximate width of 3″ and an approximate height of 3″-8″. Channels 112 and 114 are formed from square tubing that is cut longitudinally. In another embodiment, channels 112 and 114 may be approximately 5/16″ thick and have upper and lower curved edges with a radius of approximately 1″. Thus, channels 112 and 114 of this embodiment each have a radius equal to approximately three times their thickness. In this embodiment, channels 112 and 114 may be formed from square tubing having approximate dimensions of (e.g., 6″×6″) that is cut longitudinally via a water cooled plasma cutter to form two (e.g., 6″×3″) channels.
Referring now to
Longitudinal beams 130 have an “I” shaped cross-section (i.e., I-beams), a pair of terminal ends 130a, a web 131 having a pair of side surfaces 136, an upper flange 132 and a lower flange 134. In this exemplary embodiment, beams 130 comprise a steel alloy, have a height of approximately 5½″ and a width of 5″ to 6″. However, in other embodiments beams 130 may have dimensions that differ from those of the beams 130 illustrated in
In this embodiment, glulam beams 250, 230 and 250 are formed from Douglas-fir. However, in other embodiments beams 250, 230 and 250 may be formed from other types of wood. Each beam has a first longitudinal end (205a, 230a and 250a), a second longitudinal end (205b, 230b and 250b) a first side (205c, 230c and 250c) and a second side (205d, 230d and 250d). Each glulam beam 205, 220 and 230 includes a plurality of rows or boards and columns of laminated wooden boards, called lams, that form billets. This stacked and interlocking arrangement is configured to increase the bridge strength (i.e., resistance to bending or bending strength) of each beam, and thus, the bridge strength of the glulam beam assembly 200 overall. Further, glulam beam assembly 200 is configured to have a bridge strength approximately equal to the strength of frame assembly 100. In this manner, beam assembly 200 is configured to fail in response to an applied load at approximately the same time as frame 100. In other words, the load required to cause structural failure of beam assembly 200 is approximately equal to the load required to cause structural failure of frame assembly 100. Such a feature may act to mitigate any bottlenecks in the strength of rig mat assembly 10 such that the strength of both beam assembly 200 and frame assembly 100 are used efficiently. For instance, stresses applied to assembly 10 will be shared equitably between the beam assembly 200 and frame assembly 100, such that assembly 200 and assembly 100 are configured to fail at a relatively similar stress applied to assembly 10.
Referring specifically to
Second row 211b and third row 211c of billets 210a-210f each include a first outer lam 220 (billet 210a), four inner lams 222 (billets 210b-210e) and a second outer lam 224 (billet 210f). Outer lam 220 includes a flat first face 220a, a second face 220b and a groove 220c extending into second face 220b. Inner lams 222 each include a first face 222a, a second face 222b, a tongue extending from first face 222a and a groove 222d extending into second face 222b. Outer lams 224 include a first face 224a having a tongue 224c extending therefrom and a flat second face 224b. Thus, similar to first row 211a, lams 220, 222 and 224 are configured to form an interlocking engagement via insertion of tongues 222c and 224c into an adjacently disposed groove (e.g., grooves 220c and 222d). Further, flat face 220a of lam 220 and flat face 224b of lam 224 extend into channels 112 to engage inner surfaces 112a.
Fourth row 211d includes a first outer lam 228 (billet 210a), four inner lams 230 (billets 210b-210e) and a second outer lam 232 (billet 210f). Lams 228, 230 and 232 are configured similarly to lams 212, 214 and 216, respectfully. However, the lams of row 226 are disposed in an inverted manner relative the lams of row 211a. The inversion of the lams comprising fourth row 211d allows for the insertion of outer lams 228 and 232 into channels 212 so they may engage inner surfaces 212a of channels 212. The interlocking relationship provided by the engaging tongues and grooves is configured to strengthen rows 211a-211d. For instance, the interlocking relationship of lams 212, 214 and 216 of row 211a may allow loads applied to beam 205 to be distributed across row 211a and to the frame assembly 100.
In an embodiment, glulam beam 205 is formed by first adhering and pressing four rows of lams (e.g., finger-jointed wooden boards) vertically together, to form four columns or billets (e.g., billets 210a-210f), where each billet comprises four vertically stacked lams (e.g. rows 211a-211d). Adhesive is applied to the upper and lower surfaces of the two middle lams (e.g., lams 220 of billet 210a), while the uppermost lam (e.g., lam 212 of billet 210a) includes adhesive on its lower surface and the lowermost lam (e.g., lam 228 of billet 210a) includes adhesive on its uppermost surface. Next, tongues, grooves and rabbets are formed on the lams of each billet. In an embodiment, the billets comprise billets 210a-210f, and thus, comprise the lams of rows 211a-211d. Following the process of forming billets 211a-211f, beam 205 is formed by adhering and pressing each billet horizontally together. In this step, adhesive is applied the two side surfaces of the inner lams (e.g., lams 214, 222 and 230), the second face 212b, 220b, and 228b of lams 212, 220 and 228, respectively, and to the first side surfaces 216a, 224a and 232a of lams 216, 224 and 232, respectfully. In this arrangement, beam 205 includes lams that are adhered vertically and billets adhered horizontally to provide for greater bridge strength.
In an embodiment, a urethane glue may be used as the adhesive for the step of forming billets 211a-211f and the step of adhering each billet 211a-211f to one another to form beam 205. In an embodiment, lams are vertically pressed at a pressure of at least 125 pounds per square inch (PSI) to help form billets 211a-211f. Similarly, in an embodiment, billets 210a-210f are pressed together at a pressure of at least 125 PSI to form beam 205. Glulam beams 230 and 250 are configured similarly to beam 205, as shown in
A plurality of perpendicularly or horizontally extending grooves or dados extend into the top surface of row 211a. Specifically, in this embodiment a central groove 234 is disposed longitudinally between a pair of outer horizontal grooves 236. However, in other embodiments there may be no central groove 234. An identical set of grooves extend into the bottom surface of fourth row 211d in the same manner (not shown). Grooves 234 and 236 are configured to allow steel straps 150 to extend into channels 112, and to allow for their outside surfaces be disposed flush with the top of the glulam beams, as described above. Further, in this embodiment straps 150 are stitch welded to the upper and lower flanges 132 and 134, respectfully of each beam 130 to enhance the structural integrity of mat assembly 10. As discussed above, I-beams 130 physically engage the glulam beams of beam assembly 200. Specifically, after assembly (as shown in
Having described an embodiment of a rig mat assembly 10, embodiments of a rig mat system will now be described. Referring to
Referring to
In this embodiment, each bolt assembly 380 includes a fastener or threaded bolt 382, a base pedestal 384, a bushing 386, a compression plate 388, a washer 390 and a locking nut 392. Threaded bolt 382 that is inserted upward and threaded through apertures 364 of frame 360. Once threaded through frame 360 (as shown in
Referring now to
While embodiments have been shown and described, modifications thereof can be made by one skilled in the art without departing from the scope or teachings herein. The embodiments described herein are exemplary only and are not limiting. Many variations and modifications of the systems, apparatus, and processes described herein are possible and are within the scope of the disclosure. Accordingly, the scope of protection is not limited to the embodiments described herein, but is only limited by the claims that follow, the scope of which shall include all equivalents of the subject matter of the claims. Unless expressly stated otherwise, the steps in a method claim may be performed in any order. The recitation of identifiers such as (a), (b), (c) or (1), (2), (3) before steps in a method claim are not intended to and do not specify a particular order to the steps, but rather are used to simply subsequent reference to such steps.
This application claims benefit of U.S. Provisional Application Ser. No. 61/828,889 filed on May 30, 2013, entitled “Modular Rig Mat System” which is hereby incorporated herein by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US14/40310 | 5/30/2014 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
61828889 | May 2013 | US |