The invention relates in general to a rotary cutting tool, and in particular to a modular rotary cutting tool, such as a drill, and the like, with a cutting head and a support for accommodating the cutting head.
One type of rotary tool is a modular rotary tool with two coupling parts; namely, a support and a cutting head. The cutting head is interchangeably mounted in the pocket structure of the support. Unfortunately, in these designs, the radial and axial forces that occur during a drilling operation, especially on uneven or inclined surfaces, may lead to excessive elastic or ultimately plastic deformation of the pocket structure, which can result in peak loads and breakages.
Embodiments of the invention are directed to addressing problems associated with excessive stresses and deformation of the pocket structure by providing clamping surfaces that are inclined with respect to the central, longitudinal axis of the rotary cutting tool, thereby preventing unwanted movement of the cutting head in the support during a drilling operation. Another problem addressed by the invention is in the reduction of stresses on critical areas of the cutting head.
In one aspect of the invention, a cutting head for a rotary tool extending in an axial direction along an axis of rotation includes a front cutting part; a coupling pin having an outer peripheral surface, the coupling pin divided into a front pin part and a rear pin part, the front pin part having a circumferential groove, the coupling pin including a torque surface formed on the rear pin part, and a clamping surface formed on the front pin part; and a stop surface for an axial pullout prevention effective in the axial direction, wherein the clamping surface tapers radially inward in a direction of the front cutting part.
In another aspect of the invention, a rotary tool is provided extending in an axial direction along an axis of rotation having a support including a pair of opposing support structures, each support structure having an inner peripheral surface defining a coupling pin receptacle, the inner peripheral surface divided into a front receiving part and a rear receiving part, the rear receiving part including a circumferential groove, the front receiving part including a clamping surface and the rear receiving part including a stop surface. The rotary tool further including a cutting head capable of being received in the coupling pin receptacle of the support, the cutting head having a front cutting part; a coupling pin having an outer peripheral surface, the coupling pin divided into a front pin part and a rear pin part, the front pin part having a circumferential groove, the rear pin part including a torque surface, and the front pin part including a clamping surface; and a stop surface for an axial pullout prevention effective in the axial direction, wherein the clamping surfaces of the support and the cutting head taper radially inward in a direction of the front cutting part.
In yet another aspect of the invention, a rotary tool is provided extending in an axial direction along an axis of rotation, having a support including a pair of opposing support structures, each support structure having an inner peripheral surface defining a coupling pin receptacle, the inner peripheral surface divided into a front receiving part and a rear receiving part, the rear receiving part having a circumferential groove, the front receiving part including clamping surfaces and the rear receiving part including stop surfaces; and a cutting head capable of being received in the coupling pin receptacle of the support. The cutting head includes a front cutting part defining a cutting diameter, D; a coupling pin having an outer peripheral surface, the coupling pin divided into a front pin part and a rear pin part, the front pin part having a circumferential groove, the rear pin part including torque surfaces, and the front pin part including clamping surfaces; and stop surfaces for an axial pullout prevention effective in the axial direction, wherein the clamping surfaces of the support and the cutting head taper radially inward in a direction of the front cutting part at a non-zero, second angle of inclination, α2, of between 2.5 degrees to 6.0 degrees with respect to the axis of rotation, and wherein a gap exists between the stop surfaces of the support and the cutting head, and wherein a distance of the gap is greater than zero to about 1 percent of a diameter, D, defined by the support.
These and other aspects of the present invention will be more fully understood following a review of this specification and drawings.
While various embodiments of the invention are illustrated, the embodiments shown should not be construed to limit the claims. It is anticipated that various changes and modifications may be made without departing from the scope of this invention.
Referring now to
In the illustrated embodiment, the rotary tool 2 comprises a modular rotary drill cutting tool including a support 10 and a cutting head 12 that can be interchangeably mounted to the support 10. However, the invention is not limited to use with a modular rotary drill cutting tool. The rotary tool can also be, for example, a milling tool or another type of rotating tool, for example a reamer, a tap, or the like.
Referring to
As used herein, elements on the support 10 are identified below with the letter “a” and on the cutting head 12 with the letter “b.”
Referring to
As seen in
The coupling pin receptacle 20 is divided into two parts, namely a front receiving part 40a and a rear receiving part 42a. As shown in
Referring again to
The cutting head 12 also includes two horizontal head bearing surfaces 22b formed at the transition between the front cutting part 13 and the coupling pin 14. In one embodiment, the head bearing surfaces 22b are arranged in a common generally horizontal plane and are separated by the flutes 16.
Similar to the coupling pin receptacle 20 of the support 10, the coupling pin 14 of the cutting head 12 is divided into two parts, namely a front pin part 40b and a rear pin part 42b. In the illustrated embodiment, the front pin part 40b comprises a partially circumferential groove 37, which is interrupted by the flutes 16. A radius blend 23b is formed as a transition between the circumferential groove 37 and the head-bearing surfaces 22b. In other words, the radius blend 23b extends between the front pin part 40b and the head-bearing surfaces 22b.
Also, an insertion pin 26b (e.g., generally cylindrical in shape) extends from the coupling pin 14 and is formed concentrically with respect to the axis of rotation 6. The insertion pin 26b is optional and is formed solely for use as a first centering aid for the cutting head 12 when mounted in the support 10 (e.g., into a centering hole 26a as shown in
Referring now to
In the exemplary embodiment, the aforementioned “two parts” in each of the head 12 and support 10 (i.e., the front pin part 40b and rear pin part 42b and the front receiving part 40a and rear receiving part 42a) form two function zones or functional surfaces. In the illustrated embodiment, the front pin part 40b is radially inward with the rear pin part 42b. In addition, the front pin part 40b is axially offset with respect to the rear pin part 42b. The clamping surfaces 32a and 32b are formed in the front parts 40a, 40b, and the torque surface 30a, 30b are formed in the rear parts 42a, 42b. In other words, the clamping surfaces 32a of the support 10 are formed in the front receiving part 40a and the torque surfaces 30a of the support 10 are formed in the rear receiving part 42a. Likewise, the torque surfaces 30b of the cutting head 12 are formed in the rear pin part 42b and the clamping surfaces 32b of the cutting head 12 are formed in the tapered front pin part 40b.
Referring to
It has been found that the ratio d1/D of less than 0.60 results in a weaker coupling pin 14 and less available space for coolant holes, while a ratio of greater than 0.80 results in the possibility of a weaker support 10, in that more cross-sectional space needs to be assumed by the coupling pin 14. Analogous considerations have been found to hold for the ratio of d1/D1. Thus, a ratio of less than 0.60 results in a weaker coupling pin 14 and a ratio of greater than 0.95 results in a weaker support 10.
In addition, it has been found that the ratio d1/D1, of less than 0.60 results in a weaker coupling pin 14, thereby greatly compromising the strength of the cutting head 12, while a ratio of greater than 0.95 results in an inadequate surface area for axial support, while compromising on the space available for the radius blends 23b and 39b.
The front pin part 40b of the cutting head 12 has a front pin part length, L1, in the direction along the axis of rotation 6 that is defined by the distance between the head-bearing surfaces 22b and the stop surface 38b. In the same manner, the front receiving part 40a of the support 10 has an axial length that is approximately equal to the axial length, L1, of the front pin part 40a.
The rear pin part 42b of the cutting head 12 has a rear pin part length, L2, extending in the direction along the axis of rotation 6 that is defined by the distance between the stop surfaces 38b and the base surface 25b. In the same manner, the rear receiving part 42a of the support 10 has an axial length that is approximately equal to the axial length, L2, of the rear pin part 42b.
In one embodiment, the front pin part length, L1, and the rear pin part length, L2, are approximately equal. In another embodiment, the front pin part length, L1, and the rear pin part length, L2, preferably differ by no more than about 30 percent to 50 percent. In other words, the front pin part length, L1, differs by no more than about 0.30 to about 0.50 times the rear pin part length, L2. As shown in
It has been found that the ratio, dx/D, having a value of less than 0.40 results in a weaker the coupling pin 14, while a ratio of greater than 0.65 results in weaker support, in that the length of torque surfaces 30a, 30b, as measured in a radial direction, become smaller and the amount of material behind the torque surfaces 30a of the support 10 is significantly reduced. Analogous considerations have been found to hold for the ratio of dx/D1. Thus, the ratio of dx/D1 having a value of less than 0.45 results in a weaker coupling pin 14, while a value of greater than 0.80 results in inadequately small torque surfaces 30a, 30b and a weaker support 10.
Further, it has been found that the ratio, L3/D, having a value of less than 0.30 results too small of a surface area for torque transmission, leading to excessive contact pressure. It can also result in a reduction of the clamping surface area, which compromises clamping action and centering action. For a ratio of greater than 0.45, the significant disadvantage becomes an excess in flexibility (of the support 10), thus holding the cutting head 12 in place much less effectively. Analogous considerations have been found to hold for the ratio, L3/D1. Thus, the ratio, L3/D1, having a value of less than 0.35 results in less area for torque transmission and clamping, while a ratio of greater than 0.70 results in too much flexibility for the support 10.
In addition, the coupling pin receptacle 20 has a coupling pin receptacle length, L4. In the illustrated embodiment, the total pin length, L3, and the coupling pin receptacle length, L4 are substantially equal such that the head bearing surfaces 22b contact the front contact surfaces 22a, and the pin base surface 25b contacts the base 25a of the support 10. In an alternate embodiment, the total pin length, L3, is shorter than the coupling pin receptacle length, L4 such that the pin base surface 25b does not contact the base surface 25a of the support 10.
Referring now to
Referring to
In one embodiment, the transition areas between various lateral surfaces 30a and 30b, 32a and 32b in the axis of rotation 6 to the adjacent surfaces 22a and 22b, 38a and 38b, and 25a and 25b, are rounded or tapered.
Referring to
To assemble the cutting head 12 to the support 10, the cutting head 12 and the coupling pin 14 are inserted into the coupling pin receptacle 20 in the axial direction (i.e. along the axis of rotation 6). In this position, the cutting head 12 is rotated by approximately 90 degree with respect to the position shown in
In this intermediate position between initial contact of the base surfaces 25a, 25b and the end position, the stop surfaces 38a and 38b form a positive rear grip to prevent axial pullout of the cutting head 12. The clamping surfaces 32a and 32b form a press fit and cause the cutting head 12 to pivot about a pivot point 44 (
In one embodiment, a gap 46 exists between the stop surfaces 38a and 38b to distribute the forces between the head 12 and the support 10, as shown in
The results of the simulation provide the unexpected result of reducing stress to a minimum at the radius blend 37a (
As mentioned above, an extremely reliable coupling is realized between the cutting part 12 and the support 10 by the design described herein containing the function surfaces separated into different axial function zones, namely torque surfaces 30a and 30b and clamping surfaces 32a and 32b, as well as the axial pullout prevention surfaces in the form of the stop surfaces 38a and 38b, in combination with the clamping surfaces 32a, 32b tapering radially inward toward the front cutting part 13.
In addition, the dove-tail design of the clamping surfaces 32a, 32b has the effect of increasing clamping forces with increasing axial force during a drilling operation. Due to the interference fit between the clamping surfaces 32a and 32b, the pocket support walls 18 will deform outwardly when the head is mounted, causing the surfaces 22a to deviate from their original position and creating a small gap between the surfaces 22a and 22b near the outer diameter of the support 10. During a machining operation, the resultant axial force is then transmitted between surfaces 22a and 22b in the region proximate to the inner diameter of the support 10, creating a bending moment about point 44 which will cause the support walls 18 to apply additional clamping force into the cutting head 12. As a result, deformation and stresses on the coupling pin receptacle 20 are minimized during a drilling operation, thereby enhancing the connection between the support 10 and the cutting head 12.
The tapered clamping surfaces 32a, 32b, in combination with the groove 36 and the axial supports 38a, 38b, provide an advantage to the design. A relatively small taper angle on the clamping surfaces 32a, 32b provide stability to the cutting head 12 when drilling in conditions that will generate side loads, and prevent overload to the critical areas of the head and receptacle which are prone to high stress and breakage. More specifically, transition areas defined by the radius blends 23b and 39b of the head and 35a of the receptacle are subjected to high stress caused by combination of torsional and bending loads. It is desirable that these radius blends 23b and 39b are made as large as possible, but due to the small space available between the clamping surfaces 32a and 32b and the need of forming the axial support surface 38b, the radius blend 39b becomes small and more critical. The radius blend 23b can be substantially larger than the radius blend 39b. The tapered clamping surfaces 32a, 32b will bear significant part of the load preventing overstressing smaller radius blend 39b. Under higher side loads, the axial support surfaces 38a and 38b will guarantee that the cutting head 12 stays in its position, thereby providing stability and reliability to the connection.
According to designs as broadly contemplated herein, the stresses on critical areas of the support 10 will be minimized and kept to acceptable levels even under side loads, unlike conventional dovetail designs where the taper provides both clamping and retention. On conventional dovetail designs, the stress in the pocket will grow significantly under side loads as the cutting head displaces and pushes the walls 18 outwardly. Another advantage found here is that the combination of the dovetail-shaped clamping surfaces 32a, 32b and the groove 36 form a more flexible support structure 18. This allows the use of the same taper angles on the clamping surfaces 32a of coupling pin receptacle 20 and the clamping surfaces 32b of the cutting head 12 as the elastic deformation of support structure 18 will guarantee full surface contact during the machining operation.
As shown in
The results of the simulation tests (related to
As seen in
The patents and publications referred to herein are hereby incorporated by reference.
Having described presently preferred embodiments the invention may be otherwise embodied within the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
22394 | White | Dec 1858 | A |
40297 | Wakefield | Oct 1863 | A |
44915 | Baker | Nov 1864 | A |
329660 | Lord | Nov 1885 | A |
658216 | Munger | Sep 1900 | A |
690093 | Beach | Dec 1901 | A |
756339 | Down | Apr 1904 | A |
932071 | Urbscheit | Aug 1909 | A |
1461548 | West | Jul 1923 | A |
2158120 | Hirschberg | May 1939 | A |
2289583 | Malone | Jul 1942 | A |
2294969 | Engvall | Sep 1942 | A |
3140749 | Dionisotti | Jul 1964 | A |
3153356 | Dearborn | Oct 1964 | A |
3293727 | Simms | Dec 1966 | A |
3359837 | Andreasson | Dec 1967 | A |
3410749 | Chmiel | Nov 1968 | A |
3434553 | Weller | Mar 1969 | A |
3548688 | Kuch | Dec 1970 | A |
3765496 | Flores | Oct 1973 | A |
4293253 | Ott | Oct 1981 | A |
D262219 | Lassiter | Dec 1981 | S |
D263598 | Lassiter | Mar 1982 | S |
D273387 | Lassiter | Apr 1984 | S |
D273388 | Lassiter | Apr 1984 | S |
D273389 | Lassiter | Apr 1984 | S |
D273390 | Lassiter | Apr 1984 | S |
D273391 | Lassiter | Apr 1984 | S |
D273682 | Lassiter | May 1984 | S |
D274436 | Lassiter | Jun 1984 | S |
4561812 | Linden | Dec 1985 | A |
4744704 | Galvefors | May 1988 | A |
4844643 | Icks | Jul 1989 | A |
5024563 | Randall | Jun 1991 | A |
5114286 | Calkins | May 1992 | A |
5154549 | Isobe | Oct 1992 | A |
5154550 | Isobe | Oct 1992 | A |
5228812 | Noguchi | Jul 1993 | A |
5346335 | Harpaz | Sep 1994 | A |
5429199 | Sheirer | Jul 1995 | A |
5452971 | Nevills | Sep 1995 | A |
5509761 | Grossman | Apr 1996 | A |
5634747 | Tukala | Jun 1997 | A |
5649794 | Kress | Jul 1997 | A |
5685671 | Packer | Nov 1997 | A |
5769577 | Boddy | Jun 1998 | A |
5791838 | Hamilton | Aug 1998 | A |
5863162 | Karlsson | Jan 1999 | A |
5904455 | Krenzer | May 1999 | A |
5957631 | Hecht | Sep 1999 | A |
5971673 | Berglund | Oct 1999 | A |
5980166 | Ogura | Nov 1999 | A |
5988953 | Berglund | Nov 1999 | A |
5996714 | Massa | Dec 1999 | A |
6012881 | Scheer | Jan 2000 | A |
6045301 | Kammermeier | Apr 2000 | A |
6059492 | Hecht | May 2000 | A |
6071045 | Janness | Jun 2000 | A |
6109841 | Johne | Aug 2000 | A |
6123488 | Kasperik | Sep 2000 | A |
6276879 | Hecht | Aug 2001 | B1 |
6447218 | Lagerberg | Sep 2002 | B1 |
6481938 | Widin | Nov 2002 | B2 |
6485235 | Mast | Nov 2002 | B1 |
6506003 | Erickson | Jan 2003 | B1 |
6514019 | Schulz | Feb 2003 | B1 |
6524034 | Eng | Feb 2003 | B2 |
6530728 | Eriksson | Mar 2003 | B2 |
6582164 | McCormick | Jun 2003 | B1 |
6595305 | Dunn | Jul 2003 | B1 |
6595727 | Arvidsson | Jul 2003 | B2 |
6626614 | Nakamura | Sep 2003 | B2 |
6648561 | Kraemer | Nov 2003 | B2 |
6840717 | Eriksson | Jan 2005 | B2 |
7008150 | Krenzer | Mar 2006 | B2 |
7048480 | Borschert | May 2006 | B2 |
7070367 | Krenzer | Jul 2006 | B2 |
7114892 | Hansson | Oct 2006 | B2 |
7125207 | Craig | Oct 2006 | B2 |
7134816 | Brink | Nov 2006 | B2 |
7189437 | Kidd | Mar 2007 | B2 |
7237985 | Leuze | Jul 2007 | B2 |
7306410 | Borschert | Dec 2007 | B2 |
7309196 | Ruy Frota de Souza | Dec 2007 | B2 |
7311480 | Heule | Dec 2007 | B2 |
7360974 | Borschert | Apr 2008 | B2 |
7377730 | Hecht | May 2008 | B2 |
7407350 | Hecht | Aug 2008 | B2 |
7431543 | Buettiker | Oct 2008 | B2 |
7467915 | de Souza | Dec 2008 | B2 |
7559382 | Koch | Jul 2009 | B2 |
7591617 | Borschert | Sep 2009 | B2 |
D607024 | Dost | Dec 2009 | S |
7625161 | Ruy Frota de Souza | Dec 2009 | B1 |
7677842 | Park | Mar 2010 | B2 |
7740472 | Delamarche | Jun 2010 | B2 |
7775751 | Hecht | Aug 2010 | B2 |
7832967 | Borschert | Nov 2010 | B2 |
D632320 | Chen | Feb 2011 | S |
D633534 | Chen | Mar 2011 | S |
7972094 | Men | Jul 2011 | B2 |
RE42644 | Jonsson | Aug 2011 | E |
7997832 | Prichard | Aug 2011 | B2 |
8007208 | Noureddine | Aug 2011 | B2 |
8021088 | Hecht | Sep 2011 | B2 |
8142116 | Frejd | Mar 2012 | B2 |
D668697 | Hsu | Oct 2012 | S |
D669923 | Watson | Oct 2012 | S |
8366358 | Borschert | Feb 2013 | B2 |
8376669 | Jaeger | Feb 2013 | B2 |
8430609 | Frejd | Apr 2013 | B2 |
8449227 | Danielsson | May 2013 | B2 |
8534966 | Hecht | Sep 2013 | B2 |
8556552 | Hecht | Oct 2013 | B2 |
8596935 | Fang | Dec 2013 | B2 |
8678722 | Aare | Mar 2014 | B2 |
8678723 | Osawa | Mar 2014 | B2 |
8721235 | Kretzschmann | May 2014 | B2 |
D708034 | Huang | Jul 2014 | S |
8784018 | Paebel | Jul 2014 | B2 |
8784019 | Paebel | Jul 2014 | B2 |
D711719 | DeBaker | Aug 2014 | S |
8807888 | Borschert | Aug 2014 | B2 |
8882413 | Hecht | Nov 2014 | B2 |
8931982 | Osawa | Jan 2015 | B2 |
8992142 | Hecht | Mar 2015 | B2 |
9028180 | Hecht | May 2015 | B2 |
9050659 | Schwaegerl et al. | Jun 2015 | B2 |
9073128 | Mack | Jul 2015 | B2 |
9079255 | Jager | Jul 2015 | B2 |
9162295 | Paebel | Oct 2015 | B2 |
D742714 | King, Jr. | Nov 2015 | S |
D742948 | Kenno | Nov 2015 | S |
9180650 | Fang | Nov 2015 | B2 |
9205498 | Jaeger | Dec 2015 | B2 |
9248512 | Aare | Feb 2016 | B2 |
9296049 | Schwaegerl | Mar 2016 | B2 |
9302332 | Scanlon | Apr 2016 | B2 |
9371701 | Cox | Jun 2016 | B2 |
9481040 | Schwaegerl | Nov 2016 | B2 |
9498829 | Zabrosky | Nov 2016 | B2 |
D798921 | Frota de Souza Filho | Oct 2017 | S |
D798922 | Frota de Souza Filho | Oct 2017 | S |
10213845 | Schwagerl | Feb 2019 | B2 |
20010033780 | Berglund | Oct 2001 | A1 |
20020159851 | Krenzer | Oct 2002 | A1 |
20020168239 | Mast | Nov 2002 | A1 |
20020195279 | Bise | Dec 2002 | A1 |
20030039523 | Kemmer | Feb 2003 | A1 |
20030091402 | Lindblom | May 2003 | A1 |
20040240949 | Pachao-Morbitzer | Dec 2004 | A1 |
20050084352 | Borschert | Apr 2005 | A1 |
20050135888 | Stokey | Jun 2005 | A1 |
20060072976 | Frota de Souza | Apr 2006 | A1 |
20060093449 | Hecht | May 2006 | A1 |
20080003072 | Kim | Jan 2008 | A1 |
20080175676 | Prichard | Jul 2008 | A1 |
20080175677 | Prichard | Jul 2008 | A1 |
20080181741 | Borschert | Jul 2008 | A1 |
20080193231 | Jonsson | Aug 2008 | A1 |
20080193237 | Men | Aug 2008 | A1 |
20090044986 | Jaeger | Feb 2009 | A1 |
20090067942 | Tanaka | Mar 2009 | A1 |
20090071723 | Mergenthaler | Mar 2009 | A1 |
20090116920 | Bae | May 2009 | A1 |
20090123244 | Buettiker | May 2009 | A1 |
20090311060 | Frejd | Dec 2009 | A1 |
20100021253 | Frejd | Jan 2010 | A1 |
20100092259 | Borschert | Apr 2010 | A1 |
20100143059 | Hecht | Jun 2010 | A1 |
20100247255 | Nitzsche | Sep 2010 | A1 |
20100266357 | Kretzschmann | Oct 2010 | A1 |
20100272529 | Rozzi | Oct 2010 | A1 |
20100307837 | King | Dec 2010 | A1 |
20100322723 | Danielsson | Dec 2010 | A1 |
20100322728 | Aare | Dec 2010 | A1 |
20100322729 | Päbel | Dec 2010 | A1 |
20100322731 | Aare | Dec 2010 | A1 |
20110020072 | Chen | Jan 2011 | A1 |
20110020073 | Chen | Jan 2011 | A1 |
20110020077 | Fouquer | Jan 2011 | A1 |
20110020086 | Borschert | Jan 2011 | A1 |
20110027021 | Nelson | Feb 2011 | A1 |
20110081212 | Spichtinger | Apr 2011 | A1 |
20110097168 | Jager | Apr 2011 | A1 |
20110110735 | Klettenheimer | May 2011 | A1 |
20110110739 | Frisendahl | May 2011 | A1 |
20110168453 | Kersten | Jul 2011 | A1 |
20110229277 | Hoffer | Sep 2011 | A1 |
20110236145 | Paebel | Sep 2011 | A1 |
20110299944 | Hoefermann | Dec 2011 | A1 |
20110318128 | Schwaegerl | Dec 2011 | A1 |
20120003056 | Jaeger | Jan 2012 | A1 |
20120014760 | Glimpel | Jan 2012 | A1 |
20120082518 | Woodruff | Apr 2012 | A1 |
20120087746 | Fang | Apr 2012 | A1 |
20120087747 | Fang | Apr 2012 | A1 |
20120099937 | Osawa | Apr 2012 | A1 |
20120121347 | Osawa | May 2012 | A1 |
20120308319 | Sampath | Dec 2012 | A1 |
20120315101 | Osawa | Dec 2012 | A1 |
20130183107 | Fang | Jul 2013 | A1 |
20130183112 | Schwagerl | Jul 2013 | A1 |
20130209189 | Borschert | Aug 2013 | A1 |
20130223943 | Gey | Aug 2013 | A1 |
20130259590 | Shaheen | Oct 2013 | A1 |
20130266389 | Hecht | Oct 2013 | A1 |
20140023449 | Jonsson | Jan 2014 | A1 |
20140255115 | Zabrosky | Sep 2014 | A1 |
20140255116 | Myers | Sep 2014 | A1 |
20140301799 | Schwaegerl et al. | Oct 2014 | A1 |
20140321931 | Gey | Oct 2014 | A1 |
20140348602 | Schwaegerl | Nov 2014 | A1 |
20150063926 | Wu | Mar 2015 | A1 |
20150063931 | Wu | Mar 2015 | A1 |
20150104266 | Guter | Apr 2015 | A1 |
20150174671 | Maurer | Jun 2015 | A1 |
20150266107 | Gonen | Sep 2015 | A1 |
20150273597 | Aliaga | Oct 2015 | A1 |
20150298220 | Ach | Oct 2015 | A1 |
20150321267 | Takai | Nov 2015 | A1 |
20150328696 | Wang | Nov 2015 | A1 |
20160001379 | Kauper | Jan 2016 | A1 |
20160001381 | Lach | Jan 2016 | A1 |
20160016236 | Evans | Jan 2016 | A1 |
20160031016 | Takai | Feb 2016 | A1 |
20160059323 | Riester | Mar 2016 | A1 |
20160207122 | Chen | Jul 2016 | A1 |
20160229017 | Guy | Aug 2016 | A1 |
20160263663 | Schwaegerl | Sep 2016 | A1 |
20160263664 | Son | Sep 2016 | A1 |
20160263666 | Myers | Sep 2016 | A1 |
20160311035 | Peng | Oct 2016 | A1 |
20170028480 | Schwaegerl et al. | Feb 2017 | A1 |
20170100784 | Frota de Souza Filho | Apr 2017 | A1 |
Number | Date | Country |
---|---|---|
9431 | Oct 1902 | AT |
1160370 | Sep 1997 | CN |
1204976 | Jan 1999 | CN |
1258240 | Jun 2000 | CN |
2438535 | Jul 2001 | CN |
1616170 | May 2005 | CN |
1689740 | Nov 2005 | CN |
101048251 | Oct 2007 | CN |
100455390 | Jan 2009 | CN |
101605622 | Dec 2009 | CN |
101610866 | Dec 2009 | CN |
102006958 | Apr 2011 | CN |
102307693 | Jan 2012 | CN |
102310214 | Jan 2012 | CN |
104588739 | May 2015 | CN |
104759664 | Jul 2015 | CN |
204545517 | Aug 2015 | CN |
204565232 | Aug 2015 | CN |
106825693 | Jun 2017 | CN |
94340 | Sep 1896 | DE |
384720 | Nov 1923 | DE |
524677 | May 1931 | DE |
118806 | Sep 1984 | DE |
3733298 | Apr 1992 | DE |
19605157 | Sep 1996 | DE |
19543233 | May 1997 | DE |
29809638 | Aug 1998 | DE |
19945097 | Mar 2001 | DE |
20204848 | Jun 2002 | DE |
102004022747 | Nov 2005 | DE |
102007044095 | Mar 2009 | DE |
112009002001 | Feb 2013 | DE |
102012200690 | Jul 2013 | DE |
102012212146 | Jan 2014 | DE |
102013205889 | May 2014 | DE |
102013209371 | Nov 2014 | DE |
102015106374 | Oct 2016 | DE |
118806 | Sep 1984 | EP |
0599393 | Feb 1996 | EP |
1136161 | Sep 2001 | EP |
813459 | Jul 2003 | EP |
1476269 | Oct 2009 | EP |
2361708 | Aug 2011 | EP |
1996358 | Nov 2011 | EP |
2524755 | Nov 2012 | EP |
2551046 | Jan 2013 | EP |
907980 | Mar 1946 | FR |
17961 | Dec 1915 | GB |
1395855 | May 1975 | GB |
S5537209 | Mar 1980 | JP |
H05301104 | Nov 1993 | JP |
11019812 | Jan 1999 | JP |
2002501441 | Jan 2002 | JP |
2002113606 | Apr 2002 | JP |
2003291044 | Oct 2003 | JP |
2004255533 | Sep 2004 | JP |
2005118940 | May 2005 | JP |
2005169542 | Jun 2005 | JP |
2006167871 | Jun 2006 | JP |
2008500195 | Jan 2008 | JP |
2011036977 | Feb 2011 | JP |
6211769 | Sep 2017 | JP |
WO8403241 | Aug 1984 | WO |
WO1984003241 | Aug 1984 | WO |
WO9627469 | Sep 1996 | WO |
WO9853943 | Dec 1998 | WO |
WO03031104 | Apr 2003 | WO |
WO2007107294 | Sep 2007 | WO |
WO2008072840 | Jun 2008 | WO |
WO2008099378 | Aug 2008 | WO |
WO2009128775 | Oct 2009 | WO |
WO2010102793 | Sep 2010 | WO |
WO2014091477 | Jun 2014 | WO |
WO2015064904 | May 2015 | WO |
Entry |
---|
Oct. 26, 2017 International Search Report. |
Jun. 6, 2018 Office Action. |
Mar. 6, 2018 First office action. |
Jan. 11, 2018 First Office Action. |
Dec. 29, 2017 Office action (3 months). |
Dec. 18, 2017 Second Office Action. |
Nov. 22, 2017 First office action. |
Nov. 17, 2017 First Office Action. |
Apr. 12, 2016 Second Office Action. |
Mar. 22, 2017 First office action. |
Dec. 8, 2015 Office action (3 months). |
Nov. 6, 2015 Final Office Action. |
Sep. 2, 2015 First office action. |
Jul. 16, 2015 International Search Report Transmitted. |
Oct. 12, 2015 First office action. |
Jul. 7, 2015 Office action (3 months). |
Mar. 23, 2016 First office action. |
Nov. 19, 2018 Office Action. |
Sep. 13, 2018 Office Action. |
Aug. 28, 2018 Office Action. |
Jul. 24, 2018 Office Action. |
Jun. 5, 2018 Office Action. |
Dec. 1, 2017 Second Office Action. |
Sep. 19, 2017 Final Office Action. |
Sep. 6, 2017 Final Office Action. |
Jul. 14, 2017 Office action (3 months). |
Jun. 27, 2017 Office action (3 months). |
May 25, 2017 Office action (3 months). |
May 9, 2017 Second Office Action. |
Apr. 19, 2017 First Office Action. |
Apr. 6, 2017 Second Office Action. |
Apr. 6, 2017 First office action. |
Apr. 1, 2017 First Office Action. |
Mar. 21, 2017 Office action (3 months). |
Mar. 10, 2017 Office action (3 months). |
Dec. 30, 2016 Final Office Action. |
Nov. 23, 2016 Final Office Action. |
Feb. 25, 2020 International preliminary report on patentability received WO App. No. 2019040090. |
Feb. 3, 2020 Exam Notice. |
Jun. 27, 2018 Notice of Allowance. |
May 29, 2018 Notice of Allowance. |
Aug. 22, 2017 Notice of Allowance. |
Mar. 17, 2017 Notice of Allowance. |
Nov. 16, 2016 Second Office Action. |
Nov. 15, 2016 EPO Notification R161(1) & R.162. |
Oct. 25, 2016 Office action (3 months). |
Oct. 20, 2016 Office action (3 months). |
Sep. 27, 2016 First office action. |
Aug. 22, 2016 First office action. |
Aug. 2, 2016 Notice of Allowance. |
Jul. 29, 20169 Office action (3 months). |
Jun. 2016 Office action (3 months). |
May 27, 2016 Notice of Allowance. |
May 26, 2016 Notice of Allowance. |
Apr. 8, 2016 Office action (2 months). |
Mar. 7, 2016 Final Office Action. |
Feb. 23, 2016 Office action (3 months). |
Nov. 3, 2015 Final Office Action. |
Oct. 22, 2015 Office action (3 months). |
May 13, 2014—Office Action—K4262EDE1. |
Jun. 13, 2019 Non-Final OA. |
Jan. 10, 2019 Notice of Allowance. |
Number | Date | Country | |
---|---|---|---|
20190054548 A1 | Feb 2019 | US |