1. Field of the Invention
The present disclosure relates to a modular, scalable system for lining a ditch or other channel for transporting water.
2. Related Art
Ditches have been commonly used to transport water from one point to another for millennia. For example, earthen ditches have been used to transport irrigation water, potable water, and drainage water. Because they are relatively easy and inexpensive to construct in nearly any kid of terrain, earthen ditches are still commonly used today. As used herein, the term “ditch” signifies any channel whether dug in the earth and/or completely or partially built above earth level, and includes structures that may be referred to as, for example, drains, culverts, canals, or channels.
When water is transported through an earthen ditch, significant loss of water can occur in a variety of ways, e.g., seepage, evaporation, and leaks (collectively described herein as “seepage loss”). Depending on a variety of factors, as much as 80-90% of the water entering a ditch may be lost rather than reaching its intended destination. The most significant causes of seepage, losses appear to be related to non-evaporative causes where the water is lost into the surrounding soil, which loss may be accelerated by erosion (particularly for fast moving water), excessive vegetation and/or tree root systems, and rodent burrows. It is known that lining ditches with material that resists seepage dramatically decreases seepage losses.
Earthen ditches also require regular cleaning and maintenance to minimize water loss caused by problems such as, for example, ditch wall collapses, erosion, rodent activity, and accumulation of debris or sediment. Maintenance and repair of earthen ditches can be costly because it is labor intensive and can require large equipment.
Where drainage water flows over the ground, there may be serious erosion problems threatening structures or damaging property. This is especially true where the water is draining down a steep embankment, such as along a road or highway interchange.
Because of seepage loss or erosion damage, and the maintenance costs associated with earthen ditches, various methods of lining ditches have been proposed. The suggested lining materials include concrete, metal, and polyvinyl chlorine. However, such solutions have not fully resolved these problems or have created additional maintenance and installation problems that limit their effectiveness or implementation.
It would be desirable to provide a liquid management system or the like of a type disclosed in the present application that includes any one or more of these or other advantageous features:
These and other features and advantages of various embodiments of systems and methods according to this invention are described in, or are apparent from, the following detailed: description of various exemplary embodiments of various devices, structures, and/or methods according to this invention.
An exemplary embodiment relates to a modular, scalable liquid management system, comprising a plurality of corrugated, connectable ditch liner components, comprising at least one base and at least one arm wherein the ditch liner components are adapted to be cut to change their shape or reduce their length and/or width without compromising their connectability, the ditch liner components are adapted for connection to components of the same type for increasing one or more dimensions of the liquid management system, and the ditch liner components are adapted for side-to-side coupling of components and end-to-end coupling of components; a sealant for placement between adjacent components at or about the point of connection; a plurality of fasteners for coupling ditch liner components together; and at least one anchoring system attachable to one or more ditch-liner components for securing the liquid management system in place wherein the ditch liner components are adapted to be assembled into the liquid management system by connecting a plurality of base components side-to-side and/or end-to-end to form the base of a liquid management system, connecting a plurality of arm components end-to-end and/or side-to-side to form a first wall of a liquid management system, connecting a plurality of arm components end-to-end and/or side-to-side to form a second wall of a liquid management system; and connecting the first wall to a first side of the base and connecting the second wall to a second side of the base to form a liquid management system.
Another exemplary embodiment relates to a method of assembling a modular, scalable liquid management system, comprising providing a plurality of corrugated, connectable ditch liner components, comprising a plurality of base components wherein the ditch liner base components have corrugations adapted for side-to-side connecting and end-to-end connecting of base components and a plurality of arm components wherein the ditch liner first arm components have corrugations adapted for side-to-side connecting and end-to-end connecting of first arm components; wherein the liquid management system is scalable by removing a portion of a ditch liner component and/or connecting two or more of the same components side-to-side; assembling the liquid management system by forming a base segment, comprising one or more base components sized to a chosen shape by cutting the base components and/or connecting the base components side to side, extending the base segment by connecting one or more additional base components end-to-end to the base segment, connecting a first arm segment to the base segment, wherein the first arm segment comprises one or more arm components sized to a chosen size by cutting the arm components and/or connecting the arm components side to side, connecting a second arm segment to the base segment, wherein the second arm segment comprises one or more arm components sized to a chosen size by cutting the arm components and/or connecting the arm components side to side, placing a sealant in or at the connecting points of connected ditch liner components, and extending the liquid management system by connecting additional base components, first arm components, and second arm components to the liquid management system; and anchoring the liquid management system in place with an anchoring system.
These and other features and advantages of various embodiments of systems and methods according to this invention are described in, or are apparent from, the following detailed description of various exemplary embodiments of various devices, structures, and/or methods according to this invention.
Various exemplary embodiments of the systems and methods according to the present disclosure will be described in detail, with reference to the following figures, wherein:
It should be understood that the drawings are not necessarily to scale. In certain instances, details that are not necessary to the understanding of the invention or render other details difficult to perceive may have been omitted. It should be understood, of course, that the invention is not necessarily limited to the particular embodiments illustrated herein.
The present disclosure relates to a scalable, modular system for surface transportation of liquid for any purpose. Unlike many prior systems that require partially filling or enlarging the ditch to fit the liner, the disclosed system may scaled up or down in size and length to accommodate virtually any size ditch. The system's components are compactly stored for transportation and easily installed. In various exemplary embodiments, the disclosed system comprises a plurality of corrugated sheets that overlap and are connected to one another.
In various exemplary embodiments, the disclosed ditch liner system is assembled from two basic components: base components and arm components (i.e., side components). In some embodiments, there may be different arm components for opposite sides of a ditch (e.g., left arm components and right arm components). As will be described in greater detail below, the pieces are corrugated and adapted to overlap and connect with one another. According to various exemplary embodiments, the corrugations may comprise a relatively larger rib and relatively smaller rib that are adapted to be joined by overlapping the large rib over the small rib for a watertight seal between components.
According to various exemplary embodiments, as shown in
According to various exemplary embodiments, arm component 121 and 131 includes a recessed section 128 and 138 with large recessed ribs 126 and 136 and small recessed ribs 127 and 137. Large recessed ribs 126 and 137 and small recessed ribs 127 and 137 are slightly different in size from the ribs 122 and 123 on or near the foot 124 and knuckle 125. The recessed ribs 126 and 127 are sized to fit with ribs 122 and 123 to facilitate connecting multiple arm components 121 or 131. In various exemplary embodiments, large recessed ribs 126 and 136 are slightly smaller than large ribs 122 and 132, and small recessed ribs 127 and 137 are slightly smaller than small ribs 123 and 133. In various other exemplary embodiments, the relative sizes are reversed.
In various exemplary embodiments, as will be shown below, any number of bases 111 and/or arms 121 and 131 may be combined to achieve a desired set of dimensions for a liquid management system 100. There are two types of connections between components: end-to-end connections and side-to-side connections. The tens “end” is used in reference to the ditch liner components 111, 121, and 131 to refer to the edges of the component that are perpendicular to the direction of the flow of liquid in the system.
Referring still to
In various exemplary embodiments, two components 111, 121, and/or 131 are connected side-to-side by placing two components side-to-side with one component 111, 121, and/or 131 overlapping the other and placing a sealant 102 between. Fasteners (e.g., screws, adhesives, etc.) are used to connect the components. The fasteners bind the components together compressing the sealant therebetween to create a watertight or leak resistant seal, in various exemplary embodiments, the fasteners may pass through the sealant 102 or be located to either or both sides of the sealant 102.
Referring now to
Any sealant that will resist liquid leakage may be used. In some exemplary embodiments, the sealant is a compressible gasket. The gasket's shape may vary and will depend in large part upon the shape of the space where it will be placed. For example, a thin rectangular gasket is preferably used between overlapping end ribs in end-to-end connections of the exemplary embodiment because both the top surface of the small rib and the bottom surface of the large rib are both flat. In other exemplary embodiments the gasket may be larger or smaller and have a different shape (e.g., a cylinder or tube). A gasket may also have an adhesive on all or a portion of its surface. In various other exemplary embodiments, the sealant is an adhesive, such as, for example, 3M 740 adhesive, or other adhesives that are liquid insoluble and will resist leakage. In various exemplary embodiments, a bead of adhesive is laid down on a component that is to be overlapped for connecting. An adhesive sealant is especially preferred for side-to-side connections where the irregular shape (going up and down over ribs) makes it impractical or difficult to effectively install a gasket. In addition, in some exemplary embodiments, a bead of caulk may be applied along the side edge of the uppermost of the two components.
In some exemplary embodiments, such as the base shown in
An exemplary anchor system is shown in
As shown in
In various exemplary embodiments, the cable lock 142 and/or washer 144 are designed and/or sized so that they are larger than the opening 106 in the liquid management system 100 and will tightly fit against the surface of the liquid management system 100 entirely covering the opening in the liquid management system 100. In various exemplary embodiments, a sealant (e.g., an adhesive) may be placed between the cable lock and the ditch liner component and/or caulk may be applied around the circumference of the interface between the cable lock 142 and/or washer 144 and the liquid management system 100 to provide a watertight seal. In various exemplary embodiments, the liquid management system 100 may be anchored at any location in the system. In some exemplary embodiments, the anchor system 140 is attached to the liquid management system at locations where two or more components overlap to provide the greatest stability to all liquid management system components.
Although the system is shown using an exemplary anchor system, any anchor system may be used to secure the liquid management system in place. The selection of a particular anchor system will depend in large part on the type(s) and characteristics of soil on which the liquid management system is installed. Where the liquid management system is installed over an existing lining system (e.g., a concrete ditch or canal), an anchor that is designed to anchor to the existing bed or lining may be chosen.
In various exemplary embodiments, the disclosed system is modular because it assembled from at most primary components that can be manufactured with as few as two mold tools. In various exemplary embodiments, the disclosed system is scalable because it is adaptable for assembly in preexisting channels of virtually any size or dimensions. Prior systems had at most a few available sizes and preexisting channels had to be funned to fit the available systems. Also, larger systems would require multiple parallel channels when the largest available system was not large enough to handle peak flows.
In various exemplary embodiments, components of different sizes can be manufactured from the same tool by trimming pieces to any desired size. In various exemplary embodiments, the system components are preferably formed from recyclable materials such that material removed from the components during manufacturing or installation can be used to manufacture additional components. In various exemplary embodiments, high density polyethylene (HDPE) material can be readily thermoformed to desired shapes determined by molds using well-known methods to produce durable, long-lasting components. In various other exemplary embodiments, any material that will not deteriorate under operating conditions (e.g., that will not be absorbed into or corroded by the fluid in the system) may be used, such as other polymeric materials.
Although the liquid management system is described herein for use with water, the disclosed liquid management system may be used with any flowing or flowable (e.g., fine granular materials) material including, but not limited to water, hydrocarbons (e.g., oil or gasoline), slurries, suspensions, or mixtures (e.g., contaminated water). The disclosed system may be used to transport liquids for various purposes including, but not limited to, transportation of drinking or irrigation water, storm water control, waste water discharge, industrial safety systems (e.g., for collecting spilled liquids in the case of a spill, such as at a processing plant), collection of liquids for treatment or processing contaminated water).
As utilized herein, the terms “approximately,” “about,” “substantially,” and similar terms are intended to have a broad meaning in harmony with the common and accepted usage by those of ordinary skill in the art to which the subject matter of this disclosure pertains. It should be understood by those of skill in the art who review this disclosure that these terms are intended to allow a description of certain features described and claimed without restricting the scope of these features to the precise numerical ranges provided. Accordingly, these terms should be interpreted as indicating that insubstantial or inconsequential modifications or alterations of the subject matter described and claimed are considered to be within the scope of the invention as recited in the appended claims.
It should be noted that references to relative positions (e.g., “top” and “bottom”) in this description are merely used to identify various elements as are oriented in the figures. It should be recognized that the orientation of particular components may vary greatly depending on the application in which they are used.
For the purpose of this disclosure, the term “connected” means the joining of two members directly or indirectly to one another. Such joining may be stationary in nature or moveable in nature. Such joining may be achieved with the two members or the two members and any additional intermediate members being integrally formed as a single unitary body with one another or with the two members or the two members and any additional intermediate members being attached to one another. Such joining may be permanent in nature or may be removable or releasable in nature.
It should be appreciated that the construction and arrangement of the liquid management system, as shown in the various exemplary embodiments, is illustrative only. While the liquid management system, according to this invention, has been described in conjunction with the exemplary embodiments outlined above, various alternatives, modifications, variations, improvements, and/or substantial equivalents, whether known or that are or may be presently unforeseen, may become apparent. Accordingly, the exemplary embodiments of the liquid management system, according to this invention, as set forth above, are intended to be illustrative, not limiting. Various changes may be made without departing from the spirit and scope of the invention. Therefore, the description provided above is intended to embrace all known or later-developed alternatives, modifications, variations, improvements, and/or substantial equivalents.
This application claims priority to U.S. Provisional Application 61/267,259 filed Dec. 7, 2009, which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61267259 | Dec 2009 | US |