In many oil and gas well applications, a borehole is drilled into the earth and subsequently completed with equipment, i.e. completion equipment, to facilitate production of desired fluids from a reservoir. The completion equipment may comprise various types of sand control equipment, e.g. sand filter screens, which block the inflow of sand as the oil and/or gas flow into the completion equipment. The completion equipment may be assembled by connecting sand screen joints and deploying the sand screen joints downhole into the wellbore to a desired well zone. In a variety of applications, the wellbore may comprise multiple well zones and several sand screen joints may be disposed along each of the well zones. Within each well zone, the individual sand screen joints may comprise inflow ports through which the well fluid flows into the interior of the completion equipment for production to the surface. The individual sand screen joints also may be fitted with sliding sleeves or other devices enabling closure of the inflow ports to prevent, for example, the unwanted influx of water or other undesirable fluids. However, closure of ports along multiple sand screen joints in a given well zone can be time-consuming and expensive.
In general, a system and methodology are provided for facilitating production of desired well fluids. According to an embodiment, a well string comprises a plurality of well screen joints. The well screen joints are able to receive a well fluid from a desired well zone along a wellbore while filtering out unwanted sand. Additionally, the well screen joints are constructed to cooperate in providing a flow path to deliver the well fluid to a common inflow area. At this common inflow area, the well fluid is directed through a port or ports into an interior production passage of the well string for production to a desired collection area. According to some embodiments, the port or ports at the common inflow area may be selectively closed to block inflow of unwanted fluid from the plurality of well screen joints.
However, many modifications are possible without materially departing from the teachings of this disclosure. Accordingly, such modifications are intended to be included within the scope of this disclosure as defined in the claims.
Certain embodiments of the disclosure will hereafter be described with reference to the accompanying drawings, wherein like reference numerals denote like elements. It should be understood, however, that the accompanying figures illustrate the various implementations described herein and are not meant to limit the scope of various technologies described herein, and:
In the following description, numerous details are set forth to provide an understanding of some embodiments of the present disclosure. However, it will be understood by those of ordinary skill in the art that the system and/or methodology may be practiced without these details and that numerous variations or modifications from the described embodiments may be possible. This description is not to be taken in a limiting sense, but rather for the purpose of describing general principles of the implementations. The scope of the described implementations should be ascertained with reference to the issued claims.
As used herein, the terms “connect”, “connection”, “connected”, “in connection with”, and “connecting” are used to mean “in direct connection with” or “in connection with via one or more elements”; and the term “set” is used to mean “one element” or “more than one element”. Further, the terms “couple”, “coupling”, “coupled”, “coupled together”, and “coupled with” are used to mean “directly coupled together” or “coupled together via one or more elements”. As used herein, the terms “up” and “down”; “upper” and “lower”; “top” and “bottom”; and other like terms indicating relative positions to a given point or element are utilized to more clearly describe some elements. Commonly, these terms relate to a reference point at the surface from which drilling operations are initiated as being the top point and the total depth being the lowest point, wherein the well (e.g., wellbore, borehole) is vertical, horizontal or slanted relative to the surface.
Language of degree used herein, such as the terms “approximately,” “about,” “generally,” and “substantially” as used herein represent a value, amount, or characteristic close to the stated value, amount, or characteristic that still performs a desired function or achieves a desired result. For example, the terms “approximately,” “about,” “generally,” and “substantially” may refer to an amount that is within less than 10% of, within less than 5% of, within less than 1% of, within less than 0.1% of, and/or within less than 0.01% of the stated amount. As another example, in certain embodiments, the terms “generally parallel” and “substantially parallel” or “generally perpendicular” and “substantially perpendicular” refer to a value, amount, or characteristic that departs from exactly parallel or perpendicular, respectively, by less than or equal to 15 degrees, 10 degrees, 5 degrees, 3 degrees, 1 degree, or 0.1 degree.
The disclosure herein generally involves a system and methodology for facilitating production of desired well fluids. According to an embodiment, a well string comprises a plurality of well screen joints. The well screen joints are assembled for receipt of a well fluid from a desired well zone along a wellbore while providing sand control. The well screen joints are constructed and assembled in a manner which also creates a flow path to a common inflow area. At this common inflow area, the well fluid is directed through a port or ports into an interior production passage of the well string for production to a desired collection area. According to some embodiments, the port or ports at the common inflow area may be selectively closed to block inflow of fluid from the plurality of well screen joints. In this manner, a plurality of well screen joints may be used along a given well zone while control over the inflow of well fluid from the given well zone to the interior of the well string may be allowed or blocked via shifting of a single mechanism, e.g. a single sleeve.
Depending on the parameters of a given application, the plurality of sand control well screen joints may comprise a top screen joint, a bottom screen joint, and one or more intermediate screen joints which received well fluid and direct the well fluid along a flow path to the common inflow area. In some embodiments, the common inflow area may be defined by a sliding sleeve device having at least one port, e.g. 1-6 ports, through which fluid from the plurality of sand control well screen joints flows to an internal production passage for production to a desired collection location, e.g. a surface collection location. The sliding sleeve device may comprise a sliding sleeve which may be selectively moved between open flow and closed flow positions with respect to the at least one port. By shifting the sliding sleeve to the closed flow position, for example, inflow from the plurality of sand control well screen joints may be stopped. The use of this single device to block inflow of fluid simplifies the process of preventing inflow of unwanted fluid, e.g. water, from a given well zone.
According to an operational embodiment, a bottom well screen joint is run in hole. With a box end of the bottom well screen joint on a screen table, a subsequent well screen joint may be made up to it by, for example, threading the pin end of the subsequent well screen joint into the suspended box end. After forming the joint coupling, the combined well screen joints may be released and a slidable shroud may be slid down into place over the joint coupling. The slidable shroud is constructed to form a portion of the flow path past the joint coupling so the desirable inflowing well fluid is able to move to the common inflow area. By way of example, the slidable shroud may be initially held in position by setscrews or other suitable coupling mechanism and then sequentially secured in position over the joint coupling via setscrews or other suitable coupling mechanism.
This process can be repeated for each sequential well screen joint and/or other well string components such as the sliding sleeve device. It should be noted the sliding sleeve device may be constructed as a standalone assembly, as part of a modular screen j oint, or as part of another component of the overall well string. Ultimately, a top well screen joint is made up into the plurality of well screen joints assembled for a given well zone. It should be noted this overall assembly utilizes the established flow path to conduct the inflowing well fluid to the common inflow area defined by the sliding sleeve device or other suitable device so that inflow from a plurality of well screen joints may be combined and directed to an internal production passage of the well string via this one common inflow area. This type of assembly of well string joints may be repeated along the well string for additional well zones.
Additionally, the techniques for joining of well string joints, shrouds, and other components used to create the flow path to the common inflow area may be selected simply to provide sand control. In other words, the joining of components is sufficient if able to block the influx of sand without necessarily being sealed against the inflow of fluid.
Referring generally to
In the embodiment illustrated in
The various components of well string 20, e.g. well screen joints 28, may be sequentially connected by suitable joint couplings 48. By way of example, the joint couplings 48 may be in the form of conventional box end and pin end couplings which are made up via threaded engagement while supported on a screen table before being deployed downhole. Once made up, i.e. connected together, each joint coupling 48 may be enclosed by a shroud 50, e.g. a slidable shroud which is slid axially over the corresponding joint coupling 48 in a manner which continues the flow path 30 past the corresponding joint coupling 48.
In the embodiment illustrated, the common inflow area 32 is established by a sliding sleeve device 52 having at least one port 54, e.g. 1-6 ports, located through a device housing 56 to enable flow of the well fluid 26 from the flow path 30 to the internal production passage 34 of well string 20. As illustrated, the sliding sleeve device 52 may comprise an outer device shroud 58 surrounding housing 56 and located so as to form and direct the flow path 30 to the port(s) 54. The sliding sleeve device 52 also may comprise an internal sliding sleeve 60 slidably mounted along the interior of housing 56 and shiftable between positions allowing flow or blocking flow through the port(s) 54. In
It should be noted the sliding sleeve device 52 may be constructed as a separate component, e.g. as a separate well string joint. However, the sliding sleeve device 52 also may be combined with other components such as filter screens and/or other well string components which may be utilized in a given operation. In the embodiment illustrated in
Referring generally to
The flow of fluid 26 along flow path 30 continues from filter screen 46 and moves along a passage or passages formed between base pipe 44 and a bypass ring 64. The bypass ring 64 is connected between filter screen 46 and a shroud support structure 66 which slidably supports shroud 50. In the example illustrated, the shroud 50 comprises an outer end ring 68 which is welded or otherwise secured to a shroud body 70. The flow of fluid 26, as indicated by flow arrows, continues along flow path 30 between the support structure 66 and base pipe 44 and then along the passage or passages formed between shroud 50 and base pipe 34.
As further illustrated in
Referring generally to
As illustrated, the fluid 26 received from both uphole and downhole filter screens 46 flows along the flow path 30 between the corresponding base pipes 44 and additional bypass rings 64. The fluid 26 then flows into the portion of flow path 30 located between device housing 56 and outer shroud 58 of sliding sleeve device 52 and continues to flow to the port(s) 54 when sliding sleeve 60 is in the open flow position as illustrated in
Based on the construction of the well screen joints 28 and sliding sleeve device 52, the flow path 30 is maintained external to the base pipes 44 until the fluid 26 is able to enter internal flow passage 34 via port(s) 54. As a result, the inflow of fluid from a plurality of well screen joints 28 may be blocked at the single common inflow area 32 via, for example, shifting the single sliding sleeve 60. If, for example, unwanted water influx or gas influx occurs in this particular well zone 23, the inflow of fluid may be blocked simply by actuating a single device, e.g. shifting the single sleeve 60, which blocks inflow from a plurality of well screen joints 28 disposed along the well zone 23. Shifting of sliding sleeve 60 may be achieved relatively quickly and inexpensively by, for example, running a shifting tool downhole to engage the sliding sleeve 60 and to shift it in a linear direction to the desired operational position.
Referring generally to
In this retracted position, an end section 78 of the base pipe 44 is exposed to provide access to the base pipe 44 during a makeup operation at the rig as sequential sections of the well string 20 are connected to each other via joint coupling 48. Following makeup of the joint coupling 48, the well string 20 may be shifted in a downhole direction and the retention mechanism 76 may be released so that the shroud 50 may be slid linearly over the joint coupling 48 and into engagement with the second shroud support structure 72, as illustrated in
It should be noted that fluid tight seals may be used between the shroud 50 and the support structures 66, 72, as well as between other component connections forming flow path 30. However, in a variety of applications such connections do not require fluid tight seals and may be simply constructed as metal-to-metal connections or other connection suitable to provide sand control by preventing the influx of sand into flow path 30.
In
Depending on the parameters of a given operation and the environment in which such operation is conducted, the number of filter screens 46 and well screen joints 28 associated with a given common inflow area 32 may vary substantially. For example, two filter screens 46, three filter screens 46, or multiple filter screens 46, e.g. at least 10 filter screens, may be associated with the single common inflow area 32/single sliding sleeve device 52 for the given well zone 23. The arrangement of well screen joints 28 and sliding sleeve device 52 may be repeated along the well string 20 for different well zones 23 disposed along the overall wellbore 22.
Furthermore, additional or other components may be incorporated into the well string 20 according to the parameters of a given operation. The size and configuration of various components also may be adjusted according to the specific operation. For example, the sliding sleeve device 52 may comprise a variety of sliding sleeves 60 which may be manipulated by downhole actuators, by running a shifting tool downhole, or by other suitable mechanisms. Additionally, other types of actuatable devices may be used to allow or block flow through the port(s) 54 at the common inflow area 32. In some embodiments, the shroud 50 may be formed from solid sheet-metal. However, other applications may utilize shrouds 50 with slots or other types of holes able to provide pressure balancing while preventing the influx of sand. The shrouds 50, device housing 56, and other components may be made as unitary components or as combinations of separate subcomponents. Various connections may be formed by threaded engagement, welding, or other suitable coupling techniques.
Although a few embodiments of the disclosure have been described in detail above, those of ordinary skill in the art will readily appreciate that many modifications are possible without materially departing from the teachings of this disclosure. Accordingly, such modifications are intended to be included within the scope of this disclosure as defined in the claims.
The present document is based on and claims priority to U.S. Provisional Application Serial No.: 63/048186, filed Jul. 5, 2020, which is incorporated herein by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2021/039093 | 6/25/2021 | WO |
Number | Date | Country | |
---|---|---|---|
63048186 | Jul 2020 | US |