The present invention relates to a method for using a modular signal device for a room occupancy management system, and a room occupancy management system employable in various settings, such as a health care setting. The device and system enable healthcare personnel, for example, to assign patients to examination rooms and to monitor the status of the examination rooms.
Hospitals and healthcare professionals compete to improve the quality of their services. The management of room occupancy can be improved. For example, when a patient is placed in an exam room, caregivers and staff may not have immediate access to information about the status of the patient, whether or not a physician has visited the patient, when the visit happened, etc.
Several prior art color-coded signal systems have been devised to provide a visually-cued room occupancy management system. For example, one color-coded signal device consists of a series of multi-colored plastic flags mountable on the outside door of the examination room. Each colored flag is a code for the status of the room. When all the flags are lowered against the wall, the room is clean and empty. A raised white flag indicates that the patient is assigned to the room and is waiting inside. Raised white and yellow flags indicate that the physician is seeing the patient. A raised green flag indicates that the patient has left the room and it is ready for cleanup and so forth.
There are several problems with this kind of signal device. It is passive and has no internal lighting, so it is not visible in dimly lit hallways over long distances, or around corners. Additionally, it is not capable of visually alerting hospital personnel outside the room to emergency situations. It is also not capable of keeping track of the amount of time that the patient stays in a room or how much time a caregiver stays in the room.
Another prior art color-coded signal device consists of a vertical light fixture mounted on the wall outside an examination room. The light fixture is a light bar that has a matrix of single-color light emitting diodes (LEDs) soldered to a printed circuit board. Although this device provides more visibility than plastic flags, there are several problems associated with it. The color of each LED is fixed because it is soldered to a printed circuit board. Furthermore, the color bands and brightness of the fixed LEDs vary significantly from one manufacture to another. The LEDs are manufactured in limited number of colors, and each matrix may be made of forty fixed-colors LEDs. The manufacture of these LEDs is a relatively costly and expensive process. Another problem with these LEDs is that the matrix creates small and concentrated zones of light known as “hot spots” as a result of having uneven color intensity across the light bar. Hot spots cause confusion as to the identity of colors and thereby frustrate the purpose of the signal device.
Accordingly, it would be advantageous to provide a method for using a signal device for a room occupancy management system that includes one or more of the following advantageous features, such as an internally-lit signal device; a signal device capable of utilizing a wide variety of colors; a signal device that provides a relatively even color intensity; a signal device that does not use a fixed LED matrix; a signal device that enables a user to manage examination of patients efficiently and a signal device that enables caregivers and health staff to monitor the status of the patients in real time. Other advantages of the present invention will be apparent from the foregoing description.
The following terms are used in the claims of the patent as filed and are intended to have their broadest meaning consistent with the requirements of law. Where alternative meanings are possible, the broadest meaning is intended. All words used in the claims are intended to be used in the normal, customary usage of grammar and the English language.
“Uniform Brightness” means substantially uniform lumen intensity measured in millicandela (mcd).
“Hot Spots” means lack of uniform brightness across a panel or a light bar.
“Bleeding of color bands” means color bands crossing into adjacent color bands of the light bar.
The objects mentioned above, as well as other objects, are solved by the present invention, which overcomes disadvantages of prior art system, while providing new advantages not believed associated with such systems.
The invention relates to a method for using a modular signal device for a room occupancy management system (ROMS™). The method includes the steps of determining the status of a room and generating a signal in the modular device in response to the determination of the status of the room. The modular device may be a light bar that may be divided into segments. Each segment may have one or more LEDs to generate color bands that have uniform brightness. The segments may also include light transmissive materials to diffuse and spread the color bands evenly across the material and to generate an even color band in each segment. Each segment may be separated from other segments by a divider to prevent the color band in each segment from bleeding into others. The method may also include the step of remotely controlling the LEDs by remote display and control units using a local area network (LAN). The method may also include the step of controlling the LEDs by a local keypad.
The invention also relates to a room occupancy management system, which may be used in various settings such as healthcare setting. According to a preferred embodiment of the present invention, the system may include a modular signal device that may be located outside an examination room. The device may include a light bar divided into a plurality of segments, and each segment may include one or more light emitting diodes (LEDs) for generating color bands that has uniform brightness. The color bands may indicate the status of examination of a patient in the examination room. The light bar may include a reader for reading a radio frequency identification tag of a caregiver and so forth.
The LEDs may be controlled by one or several remote display and control units. The remote display and control units may communicate with the LEDs via a (LAN). The remote display and control units may be located at a nurses' station, a health administration station, other PCs and so forth. The remote display and control units may display the colors of the light bars located outside the examination rooms to indicate the status of examination of the patients. The remote display and control units may also receive the data transmitted from the RFID reader to indicate whether any caregiver has examined the patients and the waiting time for each patient.
The LEDs may also be controlled by one or several external control units, such as keypads that have buttons coordinated with the color bands of the light bar. The keypads may be located outside the examination rooms and may operate independently of the LAN.
In an embodiment of the invention, the light bar may have an internet protocol (IP) address. The IP address may be configured to indicate the physical location of the light bar in a health institution. For example, the IP address may include four octets, the first octet is configured to identify the LAN that the light bar is connected to, the second octet is configured to identify the institution building floor number, the third octet is configured to identify the wing number of the floor and the fourth octet is configured to identify the patient's room number. The light bar may also have a media access control (MAC) address.
In an embodiment, the signal device may be controlled by a remote display and control unit. The remote display and control unit may communicate with a server via a first LAN. The server may communicate with a firmware of the signal device via a second LAN. The firmware may include a microcontroller and software, which may be permanently stored within the flash memory of the microcontroller. The firmware may be connected to an electrically erasable programmable read-only memory (EEPROM) chip for storing the IP and MAC addresses of the signal device and retrieving the IP and MAC addresses at startup operation of the signal device. The firmware may process commands received from the remote display and control unit over the LANs and may respond by changing a state of the signal device, such as color band. The server may periodically send an IP data stream to the firmware to determine the state of the signal device (polling). The firmware may respond by checking the state of the signal device and sending an IP data stream containing the state of the signal device data back to the server. The server may employ the IP data stream to update the data in the remote display and control unit.
The signal device may also be controlled by a local external control unit. The local control unit may be communicating with the firmware for controlling the state of the signal device by transmitting commands to the microcontroller to change the state of the signal device. The microcontroller may send an IP data stream to the server to update the state of the signal device.
The novel features which are characteristic of the invention are set forth in the appended claims. The invention itself, however, together with further objects and attendant advantages thereof, will be best understood by reference to the following description taken in connection with the accompanying drawings. The drawings illustrate currently preferred embodiments of the present invention. As further explained below, it will be understood that other embodiments, not shown in the drawings, also fall within the spirit and scope of the invention.
Set forth below is a description of what are currently believed to be the preferred embodiments and/or best examples of the invention claimed. Future and present alternatives and modifications to these preferred embodiments are contemplated. Any alternatives or modifications which make insubstantial changes in function, in purpose, in structure or in result are intended to be covered by the claims of this patent.
Referring now to
Referring now to
Each light bar PCB may be assigned unique Media Access Control (MAC) and Internet Protocol (IP) addresses. The IP address enables unique identification of any particular light bar 20 on LANs 52 and 53. The IP address typically consists of four bytes and each byte contains eight bits. The bytes are also known as octets. The IP addresses are usually shown in dotted decimals by placing a period between each of the four octets. For example, the IP address “0000101010000000000000000000” is written in dotted decimals as 10.0.0.1. Each octet ranges in value from a minimum of 0 to a maximum of 255. According to the present invention, in order to identify the IP address of a particular light bar 20 in a healthcare setting, the first octet may be used to identify the network that the light bar is connected to; the second octet may be used to identify the hospital building floor number; the third octet may be used to identify the wing number of the floor and the fourth octet may be used to identify the examination room associated with light bar 20. For example, a light bar 20 may have the IP address of “120.4.1.136.” The first octet “120” may identify the network that the light bar is connected to; the second octet “4” may identify the hospital building floor number; the third octet “1” may identify the wing number of the floor and the fourth octet “136” may identify the exam room number.
The MAC address is a six byte unique identifier and is also known as the hardware address or the physical address. Each network device may have its own unique MAC address, while the IP address changes if the network device moves from one network to another. MAC addresses are 12-digit hexadecimal numbers (48 bits in length). The first half of a MAC address contains the twenty four bit identification number of the network adapter manufacturer. This number is known as an organizationally unique identifier (OUI). The second half of a MAC address represents the serial number assigned to the adapter by the manufacturer. For example, if a device has a MAC address of “00:A0:C9:14:C8:29,” the prefix “00A0C9” may indicate the name of the network adapter's manufacturer.
The IP and MAC addresses may be stored in an external electrically erasable programmable read-only memory (EEPROM) chip 78, such as Microchip Technology 24AA01 also shown in
Remote display and control stations 54 and 55 may be equipped with two user interfaces, such as screens 34, shown in
Referring now to
Room number icons 39 may be positioned to the side to enable the user to view the light bar icons groups 38 associated with the corresponding rooms. A user may be able to view the status of each particular light bar 20 by clicking on the corresponding room number icons 39.
Referring now to
Still referring to
The visibility icon 66 enables a user to focus on the status of particular rooms. When a user clicks on icon 66, screen 36 may appear as shown in
Screen 36 may also display the waiting time icon 33 for each patient in each of the examination rooms, 100-119. Health staff and caregivers would thereby be provided with immediate access to the status of each patient in each examination room 100-119 via remote display and control stations 54 and 55, which may be located throughout the health institution.
Screens 34-36 may be similar to web pages that may be accessible by clients 54 and 55 through a web browser, such as Microsoft's Internet Explorer, in runtime environment via TCP/IP. For example, when a user at a remote display and control stations 54 located at a nurses' station decides to turn off a color band on light bar 20 down a hall, the user may click on the appropriate icon on screens 34-36. Remote display and control stations 54 located at a nurses' station, for example, may create an IP data stream on server 57 using the runtime environment. This data stream may be sent out on LAN 53. The IP data stream may contain a block of data that carries with it the information necessary to deliver it to the IP address of light bar 20.
The internet protocol (IP) may deliver the data stream by checking the destination address in the header, and comparing that information to an Address Resolution Protocol's (ARP) table. If the destination address of a particular light bar is on the same LAN that is connected to remote display and control station 54, then the packet is delivered directly to that light bar. When microprocessor 46 receives the data stream, it analyzes the data within and turns off/on the color band according to the user's command.
Server 57 may periodically communicate with all of light bars 20 on LAN 52 to determine their color band states, a process called “polling.” The communication may be accomplished by sending an IP data stream to each light bar 20. Light bars 20 may respond to server 57 with IP data streams containing color bar state information. Server 57 may use this information to update display and control screens 34-36 in the runtime environment. In this arrangement, when a caregiver presses buttons 59 of keypad 56 shown in
TCP may verify that data is delivered across LAN 52 accurately and in the proper sequence. TCP provide reliable service by ensuring that a data stream is resubmitted when transmission results in an error.
Information regarding color bands, patient's waiting time, alarm states and other information for each light bar may be stored in LAN server 57. The information may be stored in a comma separated variable (CVS) spreadsheet. A health administrator may access the data in order to manage room occupancy in a health care institution from any remote display and control station 54 or 55.
Referring now to
Each light bar 20 may contain a microcontroller 46, such as Freescale Semiconductor ColdFire MCF52233CAF60. Microcontroller 46 may communicate with network server 57 over LAN 52 via transmission control protocol/internet protocol (TCP/IP) in order to receive color band control commands of light bars 20 from remote display and control stations 54 and 55, and send color band on/off states and occupancy data for light bars 20 to remote display and control stations 54 and 55, and other PCs. Microcontroller 46 may send room occupancy data to server 57 for processing, storage, and report generation. Microcontroller 46 may receive color band control commands of light bar 20 from keypad 56 via an inter-integrated circuit (I2C) bus 86. Microcontroller 46 may communicate with an external electrically erasable programmable read-only memory (EEPROM) chip 78 in order to store and retrieve the color control settings of RGB LEDs 41. Microcontroller 46 may also communicate with LED driver chips 42, such as Texas Instruments TLC5923, via a serial port interface (SPI) to send color control signals. Microcontroller 46 may control LED driver chip 42 by varying the current flow through each of the three LED elements in RGB LED 41 in steps to vary the output intensity of each element and produce different colors by combining these intensities. TLC5923 has 16 output channels. Each channel has an on/off states and a 128-step adjustable constant current sink. According to one embodiment of the present invention, TLC5923 may have five channels tied together and connected to red RGB LED element, five output channels may be tied together and connected to the green RGB LED element, and five output channels may be tied together and connected to the blue RGB LED element.
The specific color settings used by microprocessor 46 to operate TLC5923 may be set by the user's specifications. The color settings may be stored in EEPROM chip 78 when microcontroller 46 is programmed during manufacturing.
As an alternative to programming via LAN 53, microcontroller 46 may be connected to a PC, via RS232 serial data port 80 or via a background debug module (BDM) interface 81 to facilitate troubleshooting and debugging of the software that runs microcontroller 46. A watchdog supervisor chip, not shown, such as Texas Instruments' TPS3828, may be connected to microcontroller 46 in order to prevent the microcontroller from locking up during the boot cycle.
Microcontroller 46 may communicate digitally with LED driver chip 42 in order to receive LED open detection (LOD) signals, which informs microcontroller 46 about broken or disconnected LEDs in light bar 20, and switch between serial communications modes.
Referring now to
The user interface of keypad 56 may operate independently of LAN 52 as long as POE is present to provide power to light bars 20 and their associated keypads 56. As such, each light bar 20/keypad 56 may be installed to be a stand-alone unit, powered by a POE power supply connected to light bar 20 by a CAT5 cable via the RJ-45 connector 70.
Referring now to
Referring now to
It will be understood that the present invention has several advantages over the prior art. Light bar 20 has all color bands 32 A-F lit with no bleeding between them. Each color band 32 is clearly separate from the other ones. Furthermore, light bar 20 may display a wide variety of color bands 32: white 32A; Green 32B; Orange 32C; Purple 32; Red 32D and Yellow 32E. Color bands 32 are capable of being operable in three states: off, on, and flashing, in order to accommodate any institution's protocol.
Referring now to
Light bar 20 may include a reader/transceiver 83 for reading radio frequency identification tags associated with caregivers and health staff. Reader/transceiver 83 may communicate with microcontroller 46 via RS232 serial data port 80 in order to change the state of the color bands of light bar 20 when the caregiver enters or leaves the room.
The reader/transceiver 83 may transmit data to a data accumulator, such as remote display and control unit 54. The data may include information about the locations of caregivers and health staff at any time. The data may enable health institution to track whether and when caregivers have examined a patient in an examination room. A radio frequency identification tag (RFID) mechanism is well known in the art. See for example, U.S. patent application Ser. No. 11/750,571 filed on May 18, 2007, which is incorporated here by reference. The mechanism typically includes a tag, a reader or transceiver, a data accumulator, and software. The tag or transponder often serves as the female button attachment for a traditional visual identification tag. The tag may be a passive responder and may be possess no power source of its own. The charge provided by the transceiver (reader) can enable the transponder to emit a signal back to the transceiver. The transponder may contain an integrated electronic circuit, the chip, and a capacitor, which captures and uses energy from the transceiver in order to send a signal back. Electronic circuits in the transponder may be programmed as Read Only (R/O). Chips may also be programmed as Read/Write, which enables information to be added, warehoused and transferred to them.
Reader/transceiver 83 may send the electronic signal to the transponder that provides the power for the transponder to send the signal back to the transceiver 83 with the information contained in the transponder's electronic circuit. Reader/transceiver 83 may be powered by batteries or plugged into a traditional power supply. Reader/transceiver 83 may be physically attached to the data accumulator, such as remote display and control unit 55, or it may transmit data to remote display and control unit 55 wirelessly. Reader/transceiver unit 83 may include a transmitter/receiver, antennae, control unit, power unit, coupling element and an electronic interface, not shown, enabling it to communicate with remote display and control unit 55.
The data accumulator, such as remote display and control unit 55, is capable of communicating with reader/transceiver 83 and accepting the information from it. The software allows the transmission of data between transponder and reader/transceiver 83, and between reader/transceiver 83 and remote display and control unit 55.
Referring to
Referring now to
Referring to
Referring now to
Referring now to
Lack of uniform brightness causes hot spots across the light bar, which is one of the problems of the prior art. Hot spots cause confusion over the identity of color bands, and thereby frustrate the purpose of using the light bar as a signal device. Hot spots occur when different segments have different light intensity causing some segments to be more intense than others. Unlike the prior art, the present invention provides a light bar 20 with plurality of LEDs 40 having a substantially uniform brightness.
Keypad 56 is shown in
Room occupancy management system 100 may utilize standard PC workstations to remotely view and/or change room status. Host software may allow the health institution to add remote client software to the system to provide access to system 100 at other locations. In the event of a network or electrical power outage, separately powered light bar 20 and keypad 56 may be used to automatically sync and update host software residing in server 57 when the network and/or electrical power are re-established. Host software may have Open Database Connectivity (ODBC) available for data storage.
In summary, some of the advantages that system 100 provides are as follows:
1. It allows the institution to manage examination of patients efficiently.
2. It enables caregivers and health staff to monitor the status of the patients in real time.
3. It enables the institution to locate the caregivers and staff.
4. It directs the staff to the examination rooms where assistance is needed.
5. It generates patients flow reports.
6. It alerts the staff to any emergency situation.
It will be understood that various modifications to the preferred embodiment disclosed above may be made. The above description is not intended to limit the meaning of the words used in the following claims that define the invention. Rather, it is contemplated that future modifications in structure, function or result will exist that are not substantial changes and that all such insubstantial changes are intended to be covered by the following claims.