This disclosure relates to U.S. Patent Application Ser. No. 62/467,176 filed Mar. 5, 2017; PCT International Patent Application No. PCT/US2016/032170 filed May 12, 2016 (published as WO 2016/183354 A1); U.S. Pat. No. 7,462,066 filed Mar. 20, 2007; U.S. Pat. No. 7,192,303 filed Dec. 2, 2004; and U.S. Pat. No. 6,962,498 filed Dec. 12, 2001; and to U.S. Patent Application Publication No. 2009/0280673 filed Dec. 2, 2005; U.S. Provisional Applications 62/160,585 filed May 12, 2015; 62/308,718, filed Mar. 15, 2016; 62/515,464 filed Jun. 5, 2017; 62/543,912 filed Aug. 10, 2017; 62/470,170 filed Mar. 10, 2017; and 62/515,464, filed Jun. 5, 2017, the contents of all of which are hereby incorporated by reference herein, in their entirety.
The disclosure relates to smart electrical connectors and fixtures, and more particularly to an electrical plug and socket combination enabling tool-less connection and mounting of electrical fixtures at electrical outlets, the connector and/or fixtures including electronic sensors, controls, and/or communication devices.
There are a number of commercially available systems termed ‘smart-home environment’ systems, which can include one or more sensors and network-connected devices. These smart-home devices can sometimes intercommunicate and integrate together within the smart-home environment. The smart-home devices may also communicate with cloud-based smart-home control and/or data-processing systems in order to distribute control functionality, to access higher-capacity and more reliable computational facilities, and to integrate a particular smart home into a larger, multi-home or geographical smart-home-device-based aggregation.
Techniques for installing electrical fixtures and appliances such as lighting fixtures and fans on walls or ceilings usually require the assistance of a qualified electrician, and the use of a variety of tools and specialized hardware. The procedure for installing or uninstalling such fixtures can also be relatively time consuming, even when performed by an experienced installer, and can be hazardous. In addition to the need for hand-wiring the necessary electrical connections between the fixture and electrical power supply wiring, the installer must make separate mechanical connections for supporting or suspending the fixture in place.
In an embodiment of the disclosure, a device for connecting an electrical fixture to an electrical socket of the type including a socket body having an internal cavity which contains one or more electrically conductive and concentric ring-shaped contact terminals which are electrically connected to an electrical power supply wiring, the device including a plug rigidly fixed to the fixture and insertable into the socket, the plug having one or more male connectors electrically connected to the fixture and mateable with the one or more contact terminals within the socket to establish a circuit between the electrical fixture and the electrical power wiring; and a releasable latch carried on the combination of the plug and the socket for releasably mounting the fixture on the support, the device comprising a hub surrounding the plug; a plurality of sensor modules releasably connectable to a periphery of the hub, the sensor modules each including an electronic device operative to receive or transmit electronic data.
In variations thereof, the device further includes a central electronics board positioned within the hub, each of a plurality of the sensor modules electrically connectable to the central electronics board when the respective sensor module is connected to the periphery of the hub; a plurality of sensor modules are mutually electrically connectable using a wired connector, when the sensor modules are connected to the periphery of the hub; and/or the hub is circular, and sensor modules include a circuit board having an arcuate shape corresponding to a radius of the hub.
In other variations thereof, at least one sensor module wirelessly communicates a sensed condition; at least one sensor module wirelessly receives a signal; the signal is a command signal to control the device and/or an associated electrical fixture; and/or the command signal results from the sensed condition.
In further variations thereof, the device further includes a sensing module includes a transmitting sensor for receiving at least one of an RF, Wi-Fi, and Bluetooth sensor; a sensing module detects an environmental condition including at least one of temperature, humidity, smoke, carbon monoxide, motion, and presence; a sensing module includes at least one of a security camera, glass breakage detector, motion/presence detector, and emergency lighting; the sensor modules include a housing; the housing includes an access opening; and/or the sensor modules are releasably connectable to the hub using at least one of magnet, hook and loop fastener, sliding dovetail connection, interference fit, snap connection, one or more screws, adhesive, or a mechanical connection formed by an electrical connector.
In a further embodiment of the disclosure, a device for connecting an electrical fixture with electrical power supply wiring, and for mounting the fixture on a support, comprises a socket including a socket body having at least one internal cavity therein; a plurality of electrically conductive concentric ring-shaped contact terminals disposed within the cavity for establishing an electrical connection between the electrical power supply wiring and the socket; a plug rigidly fixed to the electrical fixture and insertable into the socket, the plug having a plurality of concentric ring-shaped contact terminals mateable with the plurality of contact terminals within the cavity of the socket in order to establish a circuit between the electrical fixture and the electrical power wiring; a releasable latch carried on the combination of the plug and the socket for releasably mounting the fixture on the support; and a sensing unit for at least one of wirelessly communicating a sensed condition and wirelessly receiving a signal, the sensing unit electrically coupled to at least one of the plug and socket.
In a variation thereof, the socket defining a mating plane, the plug mateable with the socket by inserting the plug into the socket at any radial angle lying on the mating plane.
A more complete understanding of the present disclosure, and the attendant advantages and features thereof, will be more readily understood by reference to the following detailed description when considered in conjunction with the accompanying drawings wherein:
As required, embodiments are disclosed herein; however, it is to be understood that the disclosed embodiments are merely examples and that the systems and methods described below can be embodied in various forms. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present subject matter in virtually any appropriately detailed structure and function. Further, the terms and phrases used herein are not intended to be limiting, but rather, to provide an understandable description of the concepts.
The terms “a” or “an”, as used herein, are defined as one or more than one. The term plurality, as used herein, is defined as two or more than two. The term another, as used herein, is defined as at least a second or more. The terms “including” and “having,” as used herein, are defined as comprising (i.e., open language). The term “coupled,” as used herein, is defined as “connected,” although not necessarily directly, and not necessarily mechanically.
The disclosure herein relates to the inventor's prior work, such as that set forth above in the documents identified in the Related Patents and Applications section, the contents of each of which are herein incorporated in their entirety by reference.
A “quick connect device” for installing electrical fixtures comprises the combination of a plug and mating socket. The plug and mating socket of the device function to both establish an electrical connection between an electrical fixture and electrical supply wiring, and mechanically support the fixture on a surface or base, typically a wall, ceiling or floor surface. As used herein, the term “fixture” or “electrical fixture” means any fixture or appliance such as a lighting fixture, ceiling fan, television camera, security device or any other device which is powered by electricity supplied by electrical wiring, and which requires a mechanical connection to support or suspend the fixture. The plug is fixedly secured to an electrical fixture, while the socket is secured to either the surface (e.g., wall, ceiling or floor) on which the fixture is to be mounted, or to an electrical junction box. The structure, function, and operation of the plug and mating socket have already been detailed in, for example, the patents and application incorporated by reference herein.
A “smart quick connect device” of the disclosure is generally defined as a connector with additional functionality in addition to the traditional capability of providing a connection. A smart quick connect device may include a sensing unit for wirelessly communicating a sensed condition. Alternatively or in addition, a smart quick connect device can include a sensing unit for wirelessly receiving a signal. The signal can be a command signal to control the smart quick connect device and/or the associated electrical fixture. The command signal can be independent of or as a result of the sensed condition.
Referring for example to the incorporated reference published as PCT/US2016/032170 (the “'170 publication”), a quick connect device 20 for installing electrical fixtures comprises the combination of a plug 22 and mating socket 24 with a sensing unit 26. A detailed description of the structure and function plug 20 and 22 is provided in the '170 publication and other incorporated references, and is therefore not described in detail herein. As in the '170 publication, one or more sensors or other receiving/input or transmitting/output electronic or electrical devices 48, 50 (hereinafter ‘sensors’) have been associated with either plug 22 or socket 24. In the instant disclosure, these sensors are configured to be replaceable within an assembly 600 including modular sensor modules 626, enabling a variable configuration of sensors.
The plug 22 and mating socket 24 of the device 20 function to both establish an electrical connection between an electrical fixture and electrical supply wiring, and mechanically support the fixture on a surface or base, typically a wall, ceiling or floor surface. As used herein, the term “fixture” or “electrical fixture” means any fixture or appliance such as a lighting fixture, ceiling fan, television camera, security device or any other device which is powered by electricity supplied by electrical wiring, and which requires a mechanical connection to support or suspend the fixture. Plug 22 is fixedly secured to an electrical fixture (not shown), while the socket 24 is secured to either the surface (e.g., wall, ceiling or floor) on which the fixture is to be mounted, or to an electrical junction box. It should be further understood that the choice of using a socket 24 for a base reflects that electrical conductors carrying dangerous electrical signals should be recessed and not touchable by people. However, where exclusively low voltage/low power signals are being used, the locations of plug and socket can be reversed or arbitrarily chosen.
Referring generally to
One or more push buttons 36, which are mechanically coupled to spindle assembly 22, provides a means of actuating spindle assembly 22 using either a finger or a tool.
Combination device 23, which receives electricity from socket 22, is electrically coupled to a sensing unit 26. Sensing unit 26 is provided with one or more sensors 48, 50. Sensors 48 are receiver sensors, for receiving a signal. Non-limiting examples of the signals that can be received are set forth below. Sensors 50 are transmitter sensors, for transmitting a signal. Non-limiting examples of the signals that can be transmitted are also set forth below. Sensors 48, 50 can be mounted on any surface of sensing unit 26, depending on the application.
Depending on sensors 48, 50, sensing unit 26 can allow operation of device 23 with a hand held remote using, for example, RF, Wi-Fi, or Bluetooth. Again, depending on sensors 48, 50, environmental conditions such as a temperature sensor, a humidity sensor, smoke and CO sensors, and/or motion/presence detection can be determined. In this regard, sensing unit 26 can be used as part of a security system, with sensors 48, 50 being a security camera (with or without motion activation), glass breakage detector, motion/presence detector, and/or emergency lighting (with battery backup).
Several different circuit boards for sensing unit 26 were developed that are intended to attach to and integrate with the combination device 23 and each one has varying amounts of circuitry and function depending upon the intended usage. Exemplary circuits and concepts are described in the patent publications incorporated by reference in general without a distinction of which board exactly contains which function.
A second side 35 of body 25 includes concentric, ring shaped, female recesses or slots 37. These slots are electrically coupled to the male connector rings on the first side 27 of body 25 and are configured to matingly receive male connector rings on the plug (not shown) attached to an electrical fixture to establish electrical connections to the fixture.
As is evident for the above disclosure, the combination device 23 functions to both establish an electrical connection between an electrical fixture and electrical supply wiring, and mechanically support the fixture on a surface or base, typically a wall, ceiling or floor surface.
Sensing unit 26 can function to provide the sensing, communications, transmission, and other functions as described herein. These functions can include any or all of, for example, BLUETOOTH communication of information; WiFi communication, for example with a function of hub, router, access point, or relay; a motion sensor to detect movement, or an infrared sensor to detect the presence of humans or animals, useable for example to control an HVAC system or to provide input for an alarm or monitoring system; thermostat; camera for communication, or for an alarm or monitoring system; speaker; smoke detector; fire detector; occupancy detector using any of a variety of appropriate sensors, such as motion, infrared, audio, image detection, image recognition, or air pressure; humidity sensor, for example to protect art or identify leaks or water intrusion; and a power consumption meter to detect intrusion or to improve efficiency; and smoke and/or air quality sensors. Herein, for brevity, the term ‘sensor’ is used to collectively refer to any device which can carry out one or more of the foregoing functions, and it should therefore be understood that a ‘sensor’ herein can sense a condition, actuate, transmit, receive, both send and receive, or is otherwise configured to carry out any of the foregoing functions.
Devices of the disclosure equipped with sensing units 26 can form part of a “smart home” architecture and operation, such as are made by GE and other companies. Accordingly, the electronic board(s) of sensing unit 26 can be provided with electronic circuitry, including an electronic processor, memory, storage, and other components which can enable programming and remote operation associated with such a function. Remote operation can include a central programming or control program which controls the functioning of a device of the disclosure. This can include, for example, control from a website, or control from an app executing upon a smartphone or tablet. Alternatively, a handheld TV/DVR style remote control device can be used.
Devices of the disclosure can include one more sensors which can function as any or all of intelligent thermostats, intelligent hazard-detection unit, intelligent entryway-interface device, smart switch, including smart wall-like switches, smart utilities interface or interface to other service, such as smart wall-plug interface, and a wide variety of intelligent, multi-sensing, network-connected appliances, including refrigerators, televisions, washers, dryers, lights, audio systems, intercom systems, mechanical actuators, wall air conditioners, pool-heating units, irrigation systems, and many other types of intelligent appliances and systems.
Devices of the disclosure can include one or more different types of sensors, one or more controllers and/or actuators, and one or more communications interfaces that connect the smart-home devices to other smart-home devices, routers, bridges, and hubs within a local smart-home environment, various different types of local computer systems, and to the Internet, through which a smart-home device may communicate with cloud-computing servers and other remote computing systems. Data communications can be carried out by sensors 48, 50 and board 52 using any of a large variety of different types of communications media and protocols, including wireless protocols, such as Wi-Fi, ZigBee, 6LoWPAN, various types of wired protocols, including CAT6 Ethernet, HomePlug, and other such wired protocols, and various other types of communications protocols and technologies. Devices of the disclosure can integrate with each other, or with previously known so-called ‘smart-home’ devices, and may themselves operate as intermediate communications devices, such as repeaters, for smart-home devices and other devices of the disclosure. A smart-home environment including devices of the disclosure can additionally include a variety of different types of legacy appliances and devices which lack communications interfaces and processor-based controllers.
A partial list of input sensors 48 that can be incorporated into the various devices of the disclosure includes, but is not limited to, the following examples:
a. zero voltage crossing—used to determine when to trigger TRIACs/IGBTs to control power delivered to attached loads;
b. communications (WiFi, Bluetooth, nRF24)—used to wirelessly receive incoming commands from remote control of output devices, and wife repeaters;
c. microphone—used for room occupancy detection, or for voice recognition, including carryout out commands by voice;
d. motion detection used for room occupancy detection or intrusion, and to issue or signal an alarm;
e. temperature and humidity sensors—used to make heating/cooling changes;
f. smoke and/or gas detectors, including detectors responsive to the presence of carbon monoxide (CO), propane and other fuels, radon, or any other gas or volatile element, and which can be used to signal or provide an alarm, and which can be used to take emergency/warning actions;
g. glass breakage detectors—used to control security devices;
h. detectors for dangerous substances;
i. a light dimmer;
j. sensors for detecting movement or sounds, including for example waving or clapping or other noises, which can be used to change a light level or other environmental parameter.
A partial list of output sensors 50 includes, but is not limited to, the following:
A. triacs/IGBTs . . . used to control fan and lights;
B. communications (WiFi, Bluetooth, nRF24), used to transmit status or convey emergency situations, or to relay information;
C. security camera: used to capture and forward images when triggered by various input sources, including for example a 360 degree camera; and
D. emergency backup light: used to provide minimal lighting in emergency situations.
These output sensors 50 can be activated based upon connected input sources 48, or by remote commands received from a communications circuit 632 (
A hub 700 is attached to plug 22 (visible in
Assembly 600, including hub 700, can be provided with an outer housing 620 having a surface finish which is attractive for installation in homes or offices or other locations where aesthetics are important. Any known material can be used for the outer surface of assembly 600, including plastic or other synthetic material, metals, or natural materials such as leather or wood. While the embodiments shown are round, any shape can be provided, such as oval, polygonal, rectangular, or arbitrary.
At least one of the sensor boards 630 has an electrical connector 612 for connecting to a mating connector 614 on central board 710. In the embodiment illustrated, each sensor board 630 is provided with a connector 612. Connector 612 can be a USB C connector, for example, although one or more of a wide variety of connectors could be used, in accordance with size and power requirements, number of connections needed, durability, cost, and other considerations. A notch or aperture 616 can be provided within container 626 to enable the connection to be formed, while maintaining connector 612 within housing 620. A central passage 708 enables release button 36 to be pressed while preventing contact with central board 710. A connector aperture 714 is provided to enable access to connector 702, attached to central board 710. Sensors 48/50 can be attached to sensor boards 630, or to housing 620, connected by wires as needed. Lenses or other protective covering can be positioned upon housing 620 to protect sensors 48/50.
Central board 710 can cooperate with sensor boards and thereby sensor modules 626 through the connector 702, or by wireless means, to provide functionality missing from sensor module 626, for example power or signal processing, or to relay information from a sensor module 626 to a network. In this manner, it is possible to avoid redundant capabilities among attached sensor modules 626, each relying instead on services provided by central board 710. Additionally, central board 710 can include costly components which can be shared among the sensor modules 626, thereby reducing the overall cost of assembly 600. Central board 710 can include, for example, the functions of control circuit 15 in the incorporated references. In embodiments, central board 710 is not provided, where sensor modules 626 can function independently, or in cooperation with each other.
Connectors 612 and 702 can be provided with sufficient contacts to enable the transmission of power, data, or power and data. For example, some modules 626 may only need power, being capable of independently transmitting and/or receiving data. Alternatively, some modules 626 may contain a source of power, and need only communicate data to central board 710. Finally, some modules may not use connector 612 for any purpose, or for only a mechanical connection. In an embodiment, central board 710 includes a standard networking communication circuit, such as ethernet or USB, each connector 702 forming a port for the network. In this manner, any sensor module 626 can be plugged into any connector 702. In other embodiments, certain connectors 702 can only be used for one or more designated module 626 types. Connectors 702 can accordingly be sized or shaped to only permit connection with such designated module 626 types.
In
As additionally shown in
Modules 626 can be attached to hub 700 by any known means, including for example using magnets, hook and loop fastener, sliding dovetail connection, interference fit, snap connection, one or more screws, adhesive, or the mechanical connection formed between connectors 612 and 702.
Turning now to
Once attached to or positioned upon a structure, a device including a plug 22 can be connected to socket 24 as described in the incorporated references. Other components are as described with respect to assembly 600, however in the embodiment of
Each sensor module 626 can be dedicated to a particular task, or multiple tasks, and can contain one or more sensors 48/50. In one embodiment a sensor module is configured to support a set of functions, for example delivering media content from a particular source to one or more output devices within the area of assembly 600 (600 collectively referring to 600/600A herein), for example to an audio system or television. For example, a module 626 can function in the manner of a ROKU or CHROMECAST device, for example if a TV is suspended from and connected to assembly 600. Sensor module 626 can likewise emulate or provide services such as ALEXA or an “OK Google” voice search.
A sensor module can be configured to cooperate with a popular computer operating system, such as MICROSOFT WINDOWS, APPLE iOS or OS X, or LINUX. In another embodiment, sensor module 626 cooperates with a particular shopping service, such as AMAZON, for example relaying requests for particular products from another device, or by spoken words. A software development kit (SDK) can be provided for central board 710 or any of sensor boards 630, so that developers can create applications which exploit features of either board.
It should be understood that in either the embodiment of
Mounting screws are provided for connecting assembly 600 to mating threaded apertures within junction box 200, such as mounting brackets 204 of junction box 200A of
With reference to
In
As noted elsewhere herein, assembly 600 can be used to relay information, including transmitting signals by WiFi, Bluetooth, or other wireless protocol, or by a wired protocol. As discussed, sensor signals can be routed in this manner, as well as media signals, such as media content, including shopping content.
Assembly 600B can include sensing modules 626 and sensors 26, generally, or may only serve to route network traffic using receivers 48 and transmitters 50, as shown in
A front face of assembly 600 of
As opposed to connecting assembly 600 to junction box 200 with screws, as described elsewhere herein, assembly 600 can be provided with a plug 22, and can be assembled onto an edifice which is provided with a socket 24. For example socket/plug 24/22 can be used to form high power connections, and connectors 712 can be used to form signal or relatively lower power connections.
In
With reference to
In
In
In
All references cited herein are expressly incorporated by reference in their entirety. It will be appreciated by persons skilled in the art that the present disclosure is not limited to what has been particularly shown and described herein above. In addition, unless mention was made above to the contrary, it should be noted that all of the accompanying drawings are not to scale. There are many different features to the present disclosure and it is contemplated that these features may be used together or separately. Thus, the disclosure should not be limited to any particular combination of features or to a particular application of the disclosure. Further, it should be understood that variations and modifications within the spirit and scope of the disclosure might occur to those skilled in the art to which the disclosure pertains. Accordingly, all expedient modifications readily attainable by one versed in the art from the disclosure set forth herein that are within the scope and spirit of the present disclosure are to be included as further embodiments of the present disclosure.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2018/020987 | 3/5/2018 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/165058 | 9/13/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
484911 | Green | Oct 1892 | A |
1595972 | DeReamer | Aug 1926 | A |
1897954 | D'Olier | Feb 1933 | A |
2077587 | Rowe | Apr 1937 | A |
2308016 | Mihalyi | Jan 1943 | A |
2313481 | Rendano | Mar 1943 | A |
2494428 | Buck | Jan 1950 | A |
2673966 | Larkin | Mar 1954 | A |
2726372 | Appleton | Dec 1955 | A |
2728895 | Quackenbush | Dec 1955 | A |
2863037 | Johnstone | Dec 1958 | A |
3118713 | Ellis | Jan 1964 | A |
3159444 | Stine | Dec 1964 | A |
3193636 | Daniels | Jul 1965 | A |
3386071 | Allen | May 1968 | A |
3398260 | Martens | Aug 1968 | A |
3521216 | Tolegian | Jul 1970 | A |
3585564 | Skjervoll | Jun 1971 | A |
3648002 | Du Rocher | Mar 1972 | A |
3651443 | Quilez | Mar 1972 | A |
3668603 | Burgess et al. | Jun 1972 | A |
3798584 | Person | Mar 1974 | A |
3808577 | Mathauser | Apr 1974 | A |
3813478 | Ervin | May 1974 | A |
3855564 | Dumas | Dec 1974 | A |
3871732 | Appleton | Mar 1975 | A |
4059327 | Vann | Nov 1977 | A |
4079244 | Bortoluzzi | Mar 1978 | A |
4083619 | McCormick et al. | Apr 1978 | A |
4107770 | Weber | Aug 1978 | A |
4133594 | Laverick et al. | Jan 1979 | A |
4335927 | Allen et al. | Jun 1982 | A |
4448388 | Dennis | May 1984 | A |
4462653 | Flederbach | Jul 1984 | A |
4473869 | De Widt | Sep 1984 | A |
4588248 | Moore | May 1986 | A |
4631648 | Nilssen | Dec 1986 | A |
4681385 | Kruger et al. | Jul 1987 | A |
4753600 | Williams | Jun 1988 | A |
5003128 | Grondin | Mar 1991 | A |
5034869 | Choi | Jul 1991 | A |
5173053 | Swanson et al. | Dec 1992 | A |
5250874 | Hall et al. | Oct 1993 | A |
5352122 | Speyer | Oct 1994 | A |
5362122 | Reihl et al. | Nov 1994 | A |
5438216 | Juskey et al. | Aug 1995 | A |
5442532 | Boulos et al. | Aug 1995 | A |
5494325 | Liu et al. | Feb 1996 | A |
5494326 | Hinds | Feb 1996 | A |
5536685 | Burward-Hoy | Jul 1996 | A |
5551882 | Whiteman | Sep 1996 | A |
5562458 | Stora et al. | Oct 1996 | A |
5584726 | Le Gallic et al. | Dec 1996 | A |
5600537 | Gordin | Feb 1997 | A |
5622873 | Kim et al. | Apr 1997 | A |
5668920 | Pelonis | Sep 1997 | A |
5710541 | Stanley | Jan 1998 | A |
5754408 | Derouiche | May 1998 | A |
5777391 | Nakamura et al. | Jul 1998 | A |
5790381 | Derouiche et al. | Aug 1998 | A |
5808556 | Nelson | Sep 1998 | A |
5836781 | Klyzin | Nov 1998 | A |
5952714 | Sano et al. | Sep 1999 | A |
5962810 | Glenn | Oct 1999 | A |
6068490 | Salzberg | May 2000 | A |
6093029 | Kwon et al. | Jul 2000 | A |
6129598 | Yu et al. | Oct 2000 | A |
6135800 | Majors | Oct 2000 | A |
6170967 | Usher et al. | Jan 2001 | B1 |
6175159 | Sasaki | Jan 2001 | B1 |
6240247 | Reiker | May 2001 | B1 |
6241559 | Taylor | Jun 2001 | B1 |
6332794 | Tzeng Jeng | Dec 2001 | B1 |
6340790 | Gordin et al. | Jan 2002 | B1 |
6364716 | Seo | Apr 2002 | B1 |
6366733 | Reiker | Apr 2002 | B1 |
6398392 | Gordin et al. | Jun 2002 | B2 |
6422722 | Voltolina | Jul 2002 | B1 |
6517223 | Hsu | Feb 2003 | B2 |
6595782 | Hsiao | Jul 2003 | B1 |
6598990 | Li | Jul 2003 | B2 |
6631243 | Reiker | Oct 2003 | B2 |
6648488 | Pearce | Nov 2003 | B1 |
6751406 | Reiker | Jun 2004 | B2 |
6793383 | Wu | Sep 2004 | B2 |
6821089 | Bilskie | Nov 2004 | B2 |
6837754 | Walton | Jan 2005 | B1 |
6962498 | Kohen | Nov 2005 | B2 |
7001199 | Badalpour | Feb 2006 | B1 |
7052301 | Garcia et al. | May 2006 | B2 |
7192303 | Kohen | Mar 2007 | B2 |
7462066 | Kohen | Dec 2008 | B2 |
7467881 | McMillen | Dec 2008 | B2 |
7706757 | Luglio et al. | Apr 2010 | B2 |
8123378 | Ruberg et al. | Feb 2012 | B1 |
8357016 | Schumacher | Jan 2013 | B2 |
8702435 | Tajima | Apr 2014 | B2 |
8894247 | Kim et al. | Nov 2014 | B2 |
8979347 | Holman | Mar 2015 | B2 |
9901039 | Dellerson et al. | Feb 2018 | B1 |
9903576 | Creasman et al. | Feb 2018 | B2 |
10317015 | Joye | Jun 2019 | B2 |
10326247 | Kohen | Jun 2019 | B2 |
20020060369 | Akram | May 2002 | A1 |
20020064380 | Reiker | May 2002 | A1 |
20020081107 | Reiker | Jun 2002 | A1 |
20030012027 | Hsu | Jan 2003 | A1 |
20030107891 | Kohen | Jun 2003 | A1 |
20040192415 | Luglio et al. | Sep 2004 | A1 |
20050148241 | Kohen | Jul 2005 | A1 |
20060141842 | Sauer | Jun 2006 | A1 |
20060146527 | Vanderschuit | Jul 2006 | A1 |
20070105414 | Kohen | May 2007 | A1 |
20070167072 | Kohen | Jul 2007 | A1 |
20080146064 | Bankstahl | Jun 2008 | A1 |
20090035970 | Kohen | Feb 2009 | A1 |
20090111322 | Roland | Apr 2009 | A1 |
20090129974 | McEllen | May 2009 | A1 |
20090280673 | Kohen | Nov 2009 | A1 |
20100020550 | Kawashima | Jan 2010 | A1 |
20100301769 | Chemel et al. | Dec 2010 | A1 |
20120196471 | Guo | Aug 2012 | A1 |
20130040471 | Gervais et al. | Feb 2013 | A1 |
20130107536 | Hiraoka | May 2013 | A1 |
20140168944 | Osada et al. | Jun 2014 | A1 |
20140225731 | Gouveia | Aug 2014 | A1 |
20140263903 | Ostrobrod | Sep 2014 | A1 |
20140268790 | Chobot et al. | Sep 2014 | A1 |
20150009666 | Keng et al. | Jan 2015 | A1 |
20150009676 | Danesh | Jan 2015 | A1 |
20150044040 | Oda et al. | Feb 2015 | A1 |
20150085500 | Cooper | Mar 2015 | A1 |
20160069556 | Li | Mar 2016 | A1 |
20160123374 | Roberts | May 2016 | A1 |
20170105265 | Sadwick | Apr 2017 | A1 |
20170234319 | Seccareccia | Aug 2017 | A1 |
20170248148 | Kohen | Aug 2017 | A1 |
20180115131 | Kohen | Apr 2018 | A1 |
20190312396 | Kohen | Oct 2019 | A1 |
20200056773 | Kohen | Feb 2020 | A1 |
Number | Date | Country |
---|---|---|
1728475 | Feb 2006 | CN |
ZL 01 8 23877.7 | Nov 2007 | CN |
101095268 | Dec 2007 | CN |
102870307 | Jan 2013 | CN |
104033399 | Sep 2014 | CN |
19849101 | Apr 1999 | DE |
29923352 | Aug 2000 | DE |
20203467 | Jun 2002 | DE |
1024559 | Aug 2000 | EP |
1456914 | Sep 2004 | EP |
1789984 | May 2007 | EP |
126246 | Aug 2001 | IL |
2011122686 | Oct 2012 | RU |
2526853 | Aug 2014 | RU |
0016442 | Mar 2000 | WO |
0101047 | Jan 2001 | WO |
03044906 | May 2003 | WO |
2005053100 | Jun 2005 | WO |
2005074087 | Aug 2005 | WO |
2006031853 | Mar 2006 | WO |
2006060772 | Jun 2006 | WO |
2006060772 | Jun 2006 | WO |
2011020231 | Feb 2011 | WO |
2011134709 | Mar 2011 | WO |
2011134709 | Nov 2011 | WO |
2012167320 | Dec 2012 | WO |
2016054159 | Apr 2016 | WO |
2016144795 | Sep 2016 | WO |
2016144795 | Sep 2016 | WO |
2016183354 | Nov 2016 | WO |
2016183354 | Nov 2016 | WO |
2016183354 | Nov 2016 | WO |
2018165646 | Sep 2018 | WO |
2018165058 | Oct 2018 | WO |
2018195068 | Oct 2018 | WO |
Entry |
---|
Office Action for U.S. Appl. No. 15/515,664, dated Sep. 10, 2019. |
International Preliminary Report on Patentability dated Sep. 10, 2019 for PCT/US2018/020987, filed Mar. 5, 2018. |
International Search Report dated Jul. 6, 2018 for PCT/US2018/027956 filed Apr. 17, 2018. |
Written Opinion dated Jul. 6, 2018 for PCT/US2018/027956 filed Apr. 17, 2018. |
International Search Report dated May 17, 2018 for PCT/US2018/021919 filed Mar. 12, 2018. |
Written Opinion for PCT/US2018/021919 filed Mar. 12, 2018. |
International Preliminary Report on Patentability dated Sep. 10, 2019 for PCT/US2018/021919. |
International Search Report dated Aug. 13, 2018 for PCT/US2018/030372 filed May 1, 2018. |
Written Opinion dated Aug. 13, 2018 for PCT/US2018/030372 filed May 1, 2018. |
International Preliminary Report on Patentability dated Oct. 22, 2019 for PCT/US2018/027956. |
International Preliminary Report on Patentability dated Nov. 14, 2017 for International Application No. PCT/US2016/032170 filed May 12, 2016. |
International Search Report dated May 14, 2018 for PCT/US2018/020987, filed Mar. 5, 2018. |
Written Opinion for PCT/US2018/020987, filed Mar. 5, 2018. |
International Preliminary Report on Patentability dated Nov. 5, 2019 for Internatioanl Application No. PCT/US2018/030372 filed May 1, 2018, 6 pages. |
Witten Opinion for International Application No. PCT/US2018/030372 filed May 1, 2018, 5 pages. |
For Chinese Patent Application No. 201580063483.2 (national stage of PCT/US2015/053138): Third Office Action, dated Sep. 18, 2019 (with English translation) Response to Third Office Action, dated Dec. 2, 2019 (13 pages). |
For Chinese Patent Application No. 201580063483.2 (national stage of PCT/US2015/053138): Response to First Office Action, dated Feb. 11, 2019 (9 pages) Response to Second Office Action, dated Aug. 26, 2019 (12 pages). |
For Russian Patent Application No. 2016800404661 (national stage of PCT/US2016/032170): Second Office Action, dated Dec. 2, 2019 (3 pags) Search Report, dated Nov. 24, 2019 (2 pages). |
For Indian Patent Application No. 201717013438 (National Stage of PCT/US2015/053138): First Examination Report, dated Dec. 13, 2019 (6 pages). |
For Russian Patent Application 2017142137 (national stage of PCT/US2016/032170): Prosecution history including decision to grant dated Oct. 25, 2019. |
Office Action issued by the European Patent Office dated Dec. 19, 2019 for Application No. 16 793 548.5-1201. |
Final Office Action for U.S. Appl. No. 15/515,664, dated Mar. 10, 2020. |
Office Action for U.S. Appl. No. 16/443,207, dated Mar. 11, 2020. |
IAEI, When continuity snaps, May-Jun. 2015. |
IAEI, Supports reinforce our safety, Flanging Support Systems, Mar.-Apr. 2015. |
Response filed Jan. 17, 2019, in U.S. Appl. No. 15/573,606. |
Chinese Search Report dated Feb. 18, 2019 for Patent Application No. 2016800404661. |
First Office Action dated Feb. 27, 2019 from Chinese Patent Office for Patent Application No. 201680040466.1. |
International Search Report dated Jul. 18, 2016 for International Application No. PCT/US2016/032170 filed May 12, 2016. |
Written Opinion for for International Application No. PCT/US2016/032170 filed May 12, 2016. |
International Search Report and Written Opinion for PCT/US2018/21919 filed Mar. 12, 2018 (047). |
International Search Report and Written Opinion for PCT/US2018/20987 filed Mar. 5, 2018. |
European Search Report dated Jul. 3, 2018 for Application No. 15846948.6. |
English translation of Search Report from Chinese Patent Office for Application No. 201580063483.2 dated Sep. 11, 2018. |
Office Action from Chinese Patent Office for Application No. 201580063483.2 dated Sep. 25, 2018 (with English translation). |
International Search Report with Written Opinion dated Jul. 6, 2018 for PCT/US2018/027956. |
Office Action dated Sep. 18, 2018 in U.S. Appl. No. 15/573,606. |
International Search Report with Written Opinion dated Aug. 13, 2018 for PCT/US2018/030372. |
Office Action dated Sep. 25, 2018 from Chinese Patent Office for Application No. 201580063483.2. |
International Search Report, Written Opinion, International Preliminary Report on Patentability for PCT/US2004/039399 filed Nov. 22, 2004. |
International Search Report, Written Opinion, International Preliminary Report on Patentability for PCT/US2005/032661 filed Sep. 14, 2005. |
International Search Report, Written Opinion, International Preliminary Report on Patentability for PCT/US2005/043934 filed Dec. 2, 2005. |
International Search Report, Written Opinion, International Preliminary Report on Patentability for PCT/US2015/53138 filed Sep. 30 2015. |
International Search Report and Written Opinion for PCT/US2016/32170 filed May 12, 2016. |
European Search Report for EP05796234 dated Nov. 5, 2007 (realted to WO2006031853). |
International Search Report for PCT/IL01/01078 filed Nov. 22, 2001. |
International Preliminary Report on Patentability dated Sep. 10, 2019 with Written Opinion for PCT/US2018/021919, filed Mar. 12, 2018. |
International Search Report for PCT/IL99/00499 filed Sep. 14, 1999. |
European Search Report for EP 01 27 4757 dated Mar. 28, 2006. |
Australian Examiner's First Report on Patent Application AU 2002221000. |
Indian First Examination Report dated Jun. 24, 2010 for Indian Application No. 1677/KOLNP/2006. |
New Zealand Examination Report for NZ Patent Application No. 533697 dated May 9, 2007. |
For Chinese Patent Application No. 01823877.7: Notice of Allowance dated Oct. 17, 2006 Second Office Action dated Apr. 6, 2007 First Office Action dated Jul. 4, 2006. |
Publication issued in the Official Gazette from Mexican Patent Application MX/a/2017/004137 dated Feb. 13, 2018, 3 pages. |
European Search Report for Application No. 16793548.5 dated Feb. 14, 2019. |
Second Office Action for Chinese Patent Application No. 201580063483.2, dated Jun. 14, 2019 (with translation of cover page). |
Number | Date | Country | |
---|---|---|---|
20200018469 A1 | Jan 2020 | US |
Number | Date | Country | |
---|---|---|---|
62467176 | Mar 2017 | US | |
62515464 | Jun 2017 | US | |
62543912 | Aug 2017 | US |