The present invention relates generally to solar energy, and particularly to systems and methods for solar generation of concentrated thermal energy.
In solar thermal energy systems, the rays of the sun are concentrated to heat a fluid to high temperature (generally in the range of 300-550° C.). Typically, the heated fluid is piped from the solar concentrator to drive a turbine in order to generate electricity. Various types of concentrator geometries are known in the art, most notably parabolic troughs, comprising long parabolic reflectors with a pipe containing the heat-transfer fluid running along the focal line of the reflectors. The troughs typically rotate in the course of the day to track the motion of the sun. Large-scale assemblies of multiple, parallel solar troughs of this sort are sometimes referred to as “solar fields.”
A system of solar troughs is described, for example, in U.S. Patent Application Publication 2009/0183731. The solar collectors in this system comprise parabolic reflectors, which rotate around a fixed thermal receiver tube using synchronously running motors, which run, even if some of them fail, without having to stop entire collector system. The convex parts of the parabolic reflectors are supported with lightweight and resistant filling materials, which are said to decrease the bending and the torsion effects generated by the wind and to decrease the load imposed on the motors. Multi-piece parabolic mirrors are used instead of single-piece mirrors in order to prevent the system from suffering too much efficiency loss even if some reflector parts are broken.
As another example, U.S. Patent Application Publication 2011/0168161 describes a solar trough field system comprising multiple parabolic reflectors and a thermal receiver tube centered at the focus of the parabolic reflectors. The thermal receiver tube consists of a metal heat receiving pipe and a glass tube, which are nested so that the glass tube surrounds the metal heat receiving pipe from outside. A vacuum seal and glass tube connector system connects the glass tubes and the thermal heat receiving pipe to each other. A rotating support unit connects the parabolic panel to the glass tube connector system and permits the thermal receiver tube to stay stationary while the parabolic panel is rotating around it. A flexible expansion unit located at the end of each parabolic trough unit provides a vacuum seal while the heat receiving pipe moves due to heat expansion.
Embodiments of the present invention that are described hereinbelow provide apparatus and methods that can be used in assembling solar thermal energy systems with enhanced performance and reduced cost.
There is therefore provided, in accordance with an embodiment of the present invention, a solar thermal energy system, including a plurality of modules, which have a predefined module length and are configured to be connected end-to-end to define an extended solar trough having a system length that is an integer multiple of the module length. Each module includes a frame, having an outer edge of circular profile and an inner edge of parabolic profile, having a focus at a geometrical center of the circular profile. A motorized drive is configured to engage and rotate the outer edge of the frame about the geometrical center. Multiple mirror segments are fitted to the inner edge of the frame. At least one heat transfer tube segment is held stationary at the geometrical center of the frame while the frame rotates and is configured to be connected to the heat transfer tube segment of an adjoining module, whereby a heat transfer fluid flows between the connected segments.
In some embodiments, the frame includes first and second end segments at respective first and second ends of the module, wherein the end segments include the outer edge that is engaged by the motorized drive. Multiple mirror supports define the inner edge of parabolic profile. A truss structure below the parabolic profile connects the mirror supports to the end segments. The second end segment may serve as the first end segment of the adjoining module.
In a disclosed embodiment, the frame includes a pair of rigid torque tubes connected longitudinally between the first and second end segments. Typically, the mirror supports have respective first and second ends, and each end is connected to one of the pair of torque tubes.
In some embodiments, the motorized drive includes a respective motor that is coupled to rotate each end segment. In a disclosed embodiment, the motorized drive includes a chain, which is attached to and extends around the outer edge of the end segment. A drive wheel is coupled to engage the chain and is driven to rotate by the respective motor so as to advance along the chain, thereby rotating the frame. The system may include a pair of sensors, which are configured to sense advancement of the chain and to provide, responsively to the advancement, signals indicative of an angle of inclination of the frame.
Typically, the end segments, mirror supports, and truss structure are pre-galvanized and are connected to one another on site without welding.
In a disclosed embodiment, the system includes multiple bases, which are mounted on foundation posts and are configured to support the plurality of the modules, each of the bases including a positioning assembly, which is operable to align the bases with one another along the extended solar trough, thereby aligning the modules supported by the bases.
In a disclosed embodiment, the at least one heat transfer tube segment includes an inner tube, for containing the heat transfer fluid, and an outer tube, surrounding the inner tube and defining an insulating space between the inner and outer tubes. One or more joints connect the inner tube of the at least one heat transfer tube segment to the inner tube of an adjoining heat transfer tube segment, while terminating the outer tubes so that the insulating space of the heat transfer tube segment is separate from the insulating space of the adjoining heat transfer tube segment.
In a disclosed embodiment, a center of mass of the frame is not located at the geometrical center of the circular profile.
There is also provided, in accordance with an embodiment of the present invention, apparatus for capture of solar energy, including a solar trough, which includes a mirror having a parabolic profile, which is configured to focus solar energy toward a focus of the parabolic profile. A motorized drive is coupled to rotate the mirror about the focus. A heat transfer tube includes multiple tube segments, which are connected at joints therebetween so that a heat transfer fluid can flow between the connected segments. A plurality of tube supports each include a base, which is fixed to the solar trough, and a ring, which is configured to hold one of the joints of the heat transfer tube at the focus of the parabolic profile, and which contains bearings configured to roll against the one of the joints so that the heat transfer tube remains stationary while the frame rotates about the center.
Typically, the heat transfer tube has a first outer diameter, and the joints have a second outer diameter, which is smaller than the first diameter, and the bearings of the ring define an inner diameter that engages the second outer diameter.
There is additionally provided, in accordance with an embodiment of the present invention, a solar reflector, including a frame, having an inner edge of parabolic profile, which defines a focal line. Multiple mirror segments, including tempered plate glass, are fitted side-by-side to the inner edge of the frame while bending to conform to the parabolic profile.
In a disclosed embodiment, the reflector includes multiple clips, which are configured to grip a margin of the tempered plate glass and to be attached to the frame in proximity to the inner edge so as to secure the mirror segments to the frame. Typically, the clips are configured to clip into corresponding receptacles distributed along the inner edge of the frame.
There is further provided, in accordance with an embodiment of the present invention, a method for assembling a solar thermal energy system, which includes providing a plurality of modules, which have a predefined module length, each module including a frame, which has an outer edge of circular profile and an inner edge of parabolic profile, having a focus at a center of the circular profile. One or more heat transfer tube segments are mounted in a stationary position at the center of the frame of each module. Multiple mirror segments are fitted to the inner edge of the frame of each module. The plurality of the modules are connected together, end-to-end, so as to define an extended solar trough having a system length that is an integer multiple of the module length. A respective motorized drive is applied to each module so as to engage and rotate the outer edge of the frame about the center. The heat transfer tube segments of the connected modules are joined together, whereby a heat transfer fluid flows between the joined tube segments.
The method may include mounting multiple bases on foundation posts, each of the bases including a positioning assembly, and adjusting the positioning assembly so as to align the bases with one another along the extended solar trough, wherein providing the plurality of the modules includes mounting the frame of each module on a respective base.
Additionally or alternatively, providing the plurality of the modules includes, in each module, assembling a pair of torque tubes between a pair of end segments, and connecting mirror supports between the torque tubes, thereby defining the frame to support the multiple mirror segments. Assembling the torque tubes and connecting the mirror supports may include fitting clamps to the torque tubes for connection of the mirror supports and assembling the mirror supports in a jig at a site of the thermal solar energy system without welding. Typically, the end segments, mirror supports, and torque tubes are pre-galvanized and are connected to one another on site without welding.
The present invention will be more fully understood from the following detailed description of the embodiments thereof, taken together with the drawings in which:
Solar thermal energy plants for electrical power generation are generally large-scale operations, which are costly and complex to install and maintain. Embodiments of the present invention that are described herein provide components and methods for use in a simplified, modular approach to solar field assembly. These components and methods can be applied economically in energy generation facilities over a wide range of scales and power output levels. They facilitate reliable operation and low cost of installation and maintenance.
In the disclosed embodiments, a solar thermal energy system is made up of multiple modules, which are connected end-to-end to define an extended solar trough. The system length of the trough is an integer multiple of the module length. Multiple troughs of this sort, possibly of varying lengths (depending on the number of modules in each trough), can be arranged in parallel to fit the solar field to the available space and topography.
Each module comprises a frame, with an outer edge having a circular profile and an inner edge of parabolic profile. The focus of the parabolic profile is along the line corresponding to the center of the circular profile, i.e., along the central axis of a cylinder whose circumference is defined by the outer, circular profiles. To track the sun's motion, each module has a motorized drive, which engages and rotates the outer edge of the frame about the center. Thus, the trough is driven my multiple motors, which are distributed along the length of the trough, typically at intervals equal to the module length, and operate in mutual synchronization. This sort of distributed drive enables the use of low-cost, relatively low-power motors and enhances the robustness of the system against motor failure.
In some embodiments, each module comprises multiple mirror segments, which are fitted side-by-side to the inner edge of the frame. The inventors have found that tempered plate glass may be used advantageously in making the mirror segments. Tempered glass sheets, typically several millimeters thick, are flexible enough to bend into the parabolic shape of the inner, parabolic profile of the frame, but at the same time strong enough to resist breakage during installation and operation of the system. Novel clips, as described below, may be attached to the inner edge of the frame while gripping the margin of the tempered plate glass in order to secure the mirror segments to the frame.
In the disclosed embodiments, a heat transfer tube is held stationary along the center line of the frame, while the frame rotates the mirror segments around the tube. A heat transfer fluid flows through the tube and absorbs heat from the sun that is concentrated by the mirror segments. The heat transfer tube comprises multiple tube segments, which are connected end-to-end within and between the adjoining modules. Each of these tube segments comprises an inner tube, in which the heat transfer fluid is contained, and an outer tube, which surrounds the inner tube and thus defines an insulating space (which is typically evacuated) between the inner and outer tubes.
At the joints between adjoining tube segments, the inner tubes of the tube segments are connected to one another, while the outer tubes are terminated. Consequently, the insulating space of each segment is separate from the adjoining segments, and the joints typically have a smaller outer diameter than that of the outer tube. The tube segments are held in place by tube supports, which are attached at their bases to the frame and have a ring with an inner diameter that is chosen to fit around and engage the joints. Bearings inside the ring roll against the joint and thus permit the tube segments to remain stationary, without rotation or transverse movement, while the frame rotates around them.
In the embodiment described below, the above features are shown, for the sake of clarity, as component elements of the same system. In alternative embodiments, however, each of these features may be applied advantageously independently of the others.
A heat transfer fluid flows through tubes 24 and absorbs solar energy that is concentrated by the solar troughs. Any suitable type of fluid may be used for this purpose, including both liquid and gaseous materials. Example fluids include high-temperature oils, water, and carbon dioxide. An inlet pipe 28 conveys cool fluid to tubes 24, while an outlet pipe 30 collects the heated fluid and conveys it to a power extraction block 32. Typically, block 32 contains an electric generator, such as a turbine, which is driven by the heated fluid. Block 32 may also contain means for storing excess heat, for later conversion to electricity. After extraction of the heat in block 32, the fluid flows back to tubes 24 via inlet pipe 28.
Two modules 22 within each trough are shown in this figure. Each module comprises multiple mirror segments 40, which are typically made from tempered plate glass with a suitable reflective coating. The mirror segments are held in a frame, of which end segments 42 and torque tubes 44 are seen in
A pair of torque tubes 44 (of which only one can be seen in
The outer edges of end segments 42 rest on corresponding bases 54, each containing a motorized drive 46, which engages and drives the outer edge, as described hereinbelow with reference to
Modules 22 have a predefined length, which is small enough to allow for convenient transport, assembly, and propulsion by drives 46, but still large enough to provide certain economies of size and scale. For example, the length of each module, measured between end segments 42, may be 12 m, while the diameter is about 5-6 m. These modules may thus be assembled into solar troughs of any desired length that is a multiple of 12 m. In a typical installation, eight to ten such modules are assembled end-to-end to create a solar trough on the order of 100 m long, but shorter or longer assemblies are likewise possible.
The low-mass design of module 22 is important particularly since the center of rotation (at heat transfer tube 24) is not the center of mass of the module, in contrast to most designs that are known in the art. A relatively small electrical motor 56, such as a stepper motor, is therefore sufficient to provide the desired rotation, particularly since the work is divided among multiple motors 56 and drives 46.
Tube supports 48, 50, 52 have respective bases 53, which are fixed to a support member 55 within the frame of module 22. A ring 49 at the opposite end of each tube support holds heat transfer tube 24 in place at the focus of the parabolic profile of mirror segments 40. As shown in
Cogs 66 assist in guiding the chain and may optionally be coupled to a sensor 68, such as an encoder, for tracking and controlling the rotation of end segment 42. For added accuracy, two such sensors may be used, one on each cog, to account for variations in chain tension and position. The sensor readings may be calibrated initially against the actual, physical angle of inclination of module 22 (by measuring the angle with an inclinometer, for example). The calibration data may then be stored in a table and used in accurately coordinating the motion of all the modules making up a given trough.
Reference is now made to
Tube 24 comprises multiple segments 70, 72, . . . , which are arranged and joined end-to-end at joints 78. Some of these joints (such as the joint shown in FIG. 5A/B) join tube segments within a given module 22, while others join together tube segments in adjoining modules. Each segment 70, 72, . . . , comprises an inner tube 76, which contains the heat transfer fluid, and an outer tube 74, which surrounds the inner tube and thus defines an insulating space between the inner and outer tubes. This space is typically evacuated, but may alternatively contain a suitable transparent heat-insulating material. Inner tube 76 typically comprises a metal with a radiation-absorbing coating, while outer tube 74 comprises a transparent material, such as glass.
Joint 78 connects inner tubes 76 of tube segments 70 and 72, while terminating outer tubes 74, so that the insulating space of each of the heat transfer tube segments is separate from the insulating space of the adjoining heat transfer tube segment. This design simplifies the assembly of tubes 24 in the field and also results in joint 78 having a smaller outer diameter than outer tubes 74 of segments 70 and 72. Ring 49, shown at the upper end of a support arm 80, contains bearings 82, which have an inner diameter that is chosen to securely engage the outer diameter of joint 78, as shown in
References is now made to
Mirror segment 40 is secured to supports 59 (or, on one side, to end segment 42) by clips 90, which may be molded from a suitable plastic or metal. The clips grip the margin of the tempered plate glass and are attached to support 59 in proximity to the parabolic inner edge so as to secure the mirror segments to the frame and hold the mirror in the desired parabolic shape. Clips 90 may clip into corresponding receptacles 92 distributed along the inner edge of support 92. This approach facilitates easy assembly while minimizing the risk of breaking the glass mirror segments.
In an embodiment of the present invention, the parts of system 20 are pre-formed in a factory and are then assembled on site in the configuration shown in
A further challenge to be met in assembling system 20 is the need for accurate alignment of mirror segments 40, so that the sun's rays are focused tightly on heat transfer tubes 24. Generally speaking, the manufacturing tolerances of the factory-made parts of the system are too great when assembled to give the desired accuracy. To overcome this problem, special jigs and other means for alignment are provided to enable personnel to assemble the system on site to the desired accuracy. Some of these features are shown in the figures that follow.
The angle of base 54 is then adjusted using a three-axis positioning assembly 106 at each end of the base. The adjustment of assembly 106 is important not only to ensure that base 54 is properly leveled, but also to bring it into alignment with the other bases, spaced apart along the length of the solar trough. To aid in alignment, bases 54 have sight holes 108. During installation and adjustment, a laser beam, for example, may be directed through the sight holes of the entire row of bases, and assemblies 106 may then be adjusted to align all of the bases to within the desired tolerance.
After adjustment of assembly 106, locking bolts are tightened to prevent any further motion and hold base 54 in alignment. If necessary, however, the bolts may subsequently be loosened, and assemblies 106 may be readjusted to compensate for settling or other shifts that may occur over time.
Torque tubes 44 are typically shipped to the installation site as bare tubes, separate from clamps 112, in order to facilitate compact packing and ease of transportation. On the other hand, it is important that the tabs for attachment of supports 59 be positioned precisely in order to ensure proper alignment of mirror segments 40. For this purpose, the bare torque tubes are mounted on jig 110, which guides the user to place clamps 112 in the proper locations, to within the required tolerance. After positioning the clamps, the user fastens them in place, and the torque tube is ready for use.
After installation of foundation posts 100 and alignment of bases 54 on the foundation posts, end segments 42 are mounted on the basis, and torque tubes 44 are connected between the end segments. Mirror supports 59 are attached to the torque tubes at clamps 112, and then mirror segments 40 are fitted to the mirror supports as shown above in FIG. 6A/B.
It will be appreciated that the embodiments described above are cited by way of example, and that the present invention is not limited to what has been particularly shown and described hereinabove. Rather, the scope of the present invention includes both combinations and subcombinations of the various features described hereinabove, as well as variations and modifications thereof which would occur to persons skilled in the art upon reading the foregoing description and which are not disclosed in the prior art.
Number | Date | Country | Kind |
---|---|---|---|
225456 | Mar 2013 | IL | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2014/059559 | 3/3/2014 | WO | 00 |