The present application pertains to modular sonic vibration buffer systems and methods, and more particularly, to modular adapters and cleaning tools for sonic vibration devices.
In the automotive and home care industries, it is common to clean metal, plastic, and other items by hand with a cleaning solution and a rag. However, the use of conventional systems and methods involves significant manual input from the user. In response, certain cleaning devices, such as polishing wheels, have been proposed. These proposed solutions also suffer from a number of deficiencies and disadvantages that limit their applicability and adoption by common consumers.
For example, the proposed solutions are difficult to apply to small spaces. In other words, sharp bends, corners, creases, grooves, gaps, crevices, and other like areas that are common features of automobiles, home appliances, and other consumer products are particularly difficult to clean or buffer according to conventional systems and methods. In addition, conventional cleaning devices are specialized units sold at a prohibitively high cost only for cleaning large items, which limits their adoption by common consumers. Polishing wheels may be available at a lower cost, but polishing wheels cannot effectively clean small spaces and corners, such that they are likewise an incomplete solution.
Accordingly, it would be a technological improvement to have a system and method that could easily and effectively clean or buffer products with different sizes, shapes, and configurations. The availability of such systems and methods would greatly improve the longevity of automobiles, home appliances, and other products while simultaneously reducing waste associated with replacing these products and improving convenience for consumers.
Briefly stated, embodiments of the present disclosure include adapter assemblies for attaching cleaning tools with different buffering tips to a sonic vibration device with the sonic vibration device operable to vibrate the buffering tips to enable cleaning with the tools. The adapter assemblies and cleaning tools have different sizes, shapes, configurations, and other characteristics that are interchangeable with the sonic vibration device in a modular nature for different cleaning and buffering applications. The cleaning tools are designed for a variety of different applications that improve upon conventional cleaning systems and methods by increasing efficiency and efficacy of cleaning components with different sizes and shapes.
In one or more embodiments, a modular sonic vibration buffer system includes: an adapter assembly having a cleaning tool mounting socket, including an adapter body having a channel and a pair of opposing cavities, and a plate removably coupled to the adapter body, the plate having a pair of opposing arms receivable in the pair of opposing cavities of the adapter body, wherein when the plate and the channel of the adapter body are coupled together the cleaning tool mounting socket is formed between the channel of the adapter body and the plate; a first cleaning tool including a support and a buffering tip; and a second cleaning tool including a support and a buffering tip, the buffering tip of the second cleaning tool having a different buffering shape than the buffering tip of the first cleaning tool, the first cleaning tool and the second cleaning tool being interchangeably coupleable to the adapter assembly with the support of the first cleaning tool or the support of the second cleaning tool received in the cleaning tool mounting socket of the adapter assembly.
In some aspects, the modular sonic vibration buffer system includes: the buffering tip of the first cleaning tool and the buffering tip of the second cleaning tool including one of cotton, foam, or rubber; the plate including a pair of ridges between the pair of opposing arms; the channel of the adapter body being located between the pair of opposing cavities of the adapter body; the adapter body including a first end and a second end opposite to the first end, the adapter body further including a mounting hole in the first end of the adapter body, the channel and the pair of opposing cavities being located at the second end of the adapter body; and a sonic vibration device with a mounting shaft, the adapter assembly being coupleable to the sonic vibration device with the mounting shaft of the sonic vibration device being receivable in the mounting hole of the adapter body, the sonic vibration device operable to vibrate one of the first cleaning tool or the second cleaning tool.
In one or more embodiments, a modular sonic vibration buffer system includes: an adapter assembly, including an adapter body having a pair of apertures and a plate removably coupled to the adapter body, the plate having a pair of arms receivable in the pair of apertures of the adapter body; a first cleaning tool having a buffering tip; and a second cleaning tool having a buffering tip, the tip of the second cleaning tool having a different buffering shape than the buffering tip of the first cleaning tool, the first cleaning tool and the second cleaning tool being interchangeably coupleable to the adapter assembly.
In some aspects, the modular sonic vibration buffer system includes: the adapter body including a mounting hole extending into the adapter body, the system further comprising a sonic vibration device with a mounting shaft, the adapter assembly coupled to the sonic vibration device with the mounting shaft of the sonic vibration device being receivable in a mounting hole of the adapter body, the sonic vibration device operable to vibrate one of the first cleaning tool or the second cleaning tool; the adapter body including a first end and a second end opposite to the first end, the mounting hole extending into the first end of the adapter body and the pair of apertures being located at the second end of the adapter body; the adapter body including a channel and the plate includes a pair of ridges extending from the plate, the pair of ridges of the plate received in the channel of the adapter body; the first cleaning tool including a support and the second cleaning tool including a support, the support of the first cleaning tool and the support of the second cleaning tool interchangeably received between the pair of ridges of the plate; the adapter assembly including a cleaning tool mounting socket defined by the pair of ridges of the plate and the adapter body, the first cleaning tool and the second cleaning tool interchangeably received in the cleaning tool mounting socket of the adapter assembly; at least one of the arms of the pair of arms of the plate including a securement ridge receivable in one of the pair of apertures of the adapter body in a snap fit connection; and the buffering tip of the first cleaning tool and the buffering tip of the second cleaning tool including one of cotton, foam, or rubber.
In one or more embodiments, a modular sonic vibration buffer system includes: a first adapter assembly, including an adapter body having a channel and a pair of apertures, the channel located between the pair of apertures, and a plate removably coupled to the adapter body, the plate having a pair of arms receivable in the pair of apertures of the adapter body, wherein when the plate and the adapter body are coupled together, a cleaning tool mounting socket is formed; a first cleaning tool having a buffering tip; and a second cleaning tool having a buffering tip, the buffering tip of the second cleaning tool having a different buffering shape than the buffering tip of the first cleaning tool, the first cleaning tool and the second cleaning tool being interchangeably coupleable to the first adapter assembly.
In some aspects, the modular sonic vibration buffer system includes: a second adapter assembly having a length that is different than a length of the first adapter assembly, the second adapter assembly including an adapter body having a channel and a pair of apertures, the channel located between the pair of apertures, and a plate removably coupled to the adapter body, the plate having a pair of arms receivable in the pair of apertures of the adapter body, wherein when the plate and the adapter body are coupled together, a cleaning tool mounting socket is formed, the first cleaning tool and the second cleaning tool being interchangeably coupleable to the second adapter assembly; a sonic vibration device, the first adapter assembly and the second adapter assembly interchangeably coupleable to the sonic vibration device; the buffering tip of the first cleaning tool being a foam block and the buffering tip of the second cleaning tool being a cotton swab with a pointed or rounded shape; the buffering tip of the first cleaning tool having a length and a width each greater than a length and a width of the buffering tip of the second cleaning tool; and the first cleaning tool including a support coupled to the buffering tip and the second cleaning tool including a support coupled to the buffering tip, the support of the first cleaning tool or the support of the second cleaning tool being receivable in the cleaning tool mounting socket of the first adapter assembly.
The present disclosure will be more fully understood by reference to the following figures, which are for illustrative purposes only. These non-limiting and non-exhaustive embodiments are described with reference to the following drawings, wherein like labels refer to like parts throughout the various views unless otherwise specified. The sizes and relative positions of elements in the drawings are not necessarily drawn to scale in some figures. For example, the shapes of various elements are selected, enlarged, and positioned to improve drawing legibility. In other figures, the sizes and relative positions of elements in the drawings are exactly to scale. The particular shapes of the elements as drawn may have been selected for ease of recognition in the drawings. The figures do not describe every aspect of the teachings disclosed herein and do not limit the scope of the claims.
Persons of ordinary skill in the art will understand that the present disclosure is illustrative only and not in any way limiting. Other embodiments of the presently disclosed systems, devices, and methods readily suggest themselves to such skilled persons having the assistance of this disclosure.
Each of the features and teachings disclosed herein can be utilized separately or in conjunction with other features and teachings to provide modular sonic vibration buffer devices, systems, and methods. Representative examples utilizing many of these additional features and teachings, both separately and in combination, are described in further detail with reference to attached
In the description below, for purposes of explanation only, specific nomenclature is set forth to provide a thorough understanding of the present system and method. However, it will be apparent to one skilled in the art that these specific details are not required to practice the teachings of the present devices, systems and methods.
Moreover, the various features of the representative examples and the dependent claims may be combined in ways that are not specifically and explicitly enumerated in order to provide additional useful embodiments of the present teachings. It is also expressly noted that all value ranges or indications of groups of entities disclose every possible intermediate value or intermediate entity for the purpose of original disclosure, as well as for the purpose of restricting the claimed subject matter. It is also expressly noted that the dimensions and the shapes of the components shown in the figures are designed to help understand how the present teachings are practiced, but are not intended to limit the dimensions and the shapes shown in the examples in some embodiments. In some embodiments, the dimensions and the shapes of the components shown in the figures are intended to limit the dimensions and the shapes of the components.
Although the present disclosure will proceed to describe certain non-limiting examples of a modular sonic vibration buffer systems, devices, and methods for cleaning and buffering automotive and home care products, which may be made of metal, it is to be appreciated that the concepts of the disclosure can be applied beyond the automotive and home care industries and may be used with any product that is manually cleaned. Accordingly, the present disclosure is not limited to the examples provided below.
The plate 112 includes a first surface 114A and a second surface 114B opposite to the first surface 114A. The first surface 114A may be flat and planar while the plate 112 includes a pair of opposing arms 116A, 116B extending from the second surface 114B. The arms 116A, 116B may be positioned at an outer peripheral edge of the plate 112 on opposite sides of the plate 112. In some embodiments, the arms 116A, 116B may generally extend perpendicularly from the second surface 114B except a tip or terminal end of the arms 116A, 116B may be rounded, curved, or may have a ridge or other protrusion for securing to and engaging the adapter body 110, as shown in
The plate 112 further includes a pair of opposing plate ridges 120A, 120B extending from the second surface 114B. The plate ridges 120A, 120B cooperate to define a channel 122 that is structured to receive and secure a cleaning tool, as described herein. In some embodiments, the plate ridges 120A, 120B begin at the top of the plate 112 in the orientation in
The modular sonic vibration buffer system 100 provides several technological improvements. Notably, it can be challenging to connect attachments to sonic vibrational systems because vibrations from the system have a tendency to cause the attachments to detach or otherwise disengage from each other or the system, or both. This can be particularly challenging with systems having numerous or a larger number of components. In this regard, the sonic vibration buffer system 100 enables a modular system to be employed that has numerous interchangeable pieces, but still provides secure attachment mechanisms that stay locked in place without coming loose due to the vibrations of the system.
In a further embodiment, the system 100 includes an additional base coupleable to the sonic vibration device 102 with the base having a mounting shaft that is structured to be coupled to the adapter assembly 104. In other words, such a system 100 includes a “universal adapter” for coupling different sonic vibration devices 102 to the adapter assembly 104. In some embodiments, the additional base or “universal adapter” includes one or more bases that are structured to fit different sonic vibration devices 102. In a non-limiting example, the system 100 includes a first base coupleable to a first type of sonic vibration device 102 and a second base coupleable to a second, different type of sonic vibration device 102. Each of the first and second bases have a mounting shaft or other coupling structure that is compatible with the adapter assembly 104. Thus, the operator can select a base for different sonic vibration devices 102 with each base being compatible with the adapter assembly 104. As mentioned above, the base may also be a single universal adapter designed to fit most, if not all, commercially available sonic vibration devices 102.
Further,
For example, the second cleaning tool 138B has a generally cylindrical support 140B with a constant diameter and a buffering tip 142B that begins with a diameter greater than the diameter of the support 140B and tapering to terminate in a cylindrical point that may have a diameter equal to or less than the diameter of the support 140B. By contrast, the fifth cleaning tool 138E has a generally rectangular support 140E with a buffering tip 142E with a generally rectangular shape that begins with a smaller width and steps up to a larger width. The buffering tip 142E also includes wide, flat, and planar major surfaces (i.e., top and bottom surfaces in the orientation shown in
Thus, the operator can select a cleaning tool 138A-138E with a desired size and shape for different cleaning and buffering applications and attach it to a plate 112A-112D and the adapter body 110. When a different tool 138A-138E would be advantageous for a different application, the operator can switch the tool 138A-138E by removing the plate 112A-112D and replacing the current tool 138A-138E with the new tool 138A-138E. The modular and interchangeable nature of the different components enables effective and efficient cleaning of a wide range of products, as well as large and small products.
In further embodiments, the cleaning tool mounting socket 144B has a semi-circular or circular shape bounded by the plate ridges 120A, 120B of the plate 121 (
Turning to
Similarly, although
In an embodiment, the adapter component 300 may be used with a cloth or other external cleaning device positioned over at least the second end 306 of the body 302. The different sizes of the surfaces 308, 310, 312 of the body 302 of the adapter component 300 enable a wide range of cleaning applications for surfaces of different shapes and sizes that are not achievable with conventional cleaning methods and devices. Alternatively, a cleaning tool may be coupled with adhesive to the first surface 308 or the second surface 310, or both. In yet further embodiments, a cleaning tool may be positioned over the second end 306, such as a removable sleeve including any of the cleaning or buffering materials described herein that is positioned over the second end 306 (i.e., the second end 306 is received internal to the sleeve). In particular, but not exclusively, the adapter component 300 provides a technological improvement for cleaning narrow spaces due to the low profile design. Further, vibration of the adapter component 300 via the sonic vibration device improves the cleaning efficiency and efficacy relative to using a cloth alone.
In view of the above, the concepts of the disclosure overcome the disadvantages of conventional cleaning devices, systems, and methods by providing adapter assemblies and cleaning tools that can efficiently and effectively clean both large and small spaces while having a low cost and being adaptable for use with conventional sonic vibration devices to increase applicability. Although not shown, the adapter assemblies and cleaning tools of the present disclosure can also be used with cleaning solution and towels or other cleaning devices to further increase their applicability and ability to clean different products and materials.
Certain words and phrases used in the specification are set forth as follows. As used throughout this document, including the claims, the singular form “a”, “an”, and “the” include plural references unless indicated otherwise. Any of the features and elements described herein may be singular, e.g., a sensor may refer to one sensor and a memory may refer to one memory. The terms “include” and “comprise,” as well as derivatives thereof, mean inclusion without limitation. The phrases “associated with” and “associated therewith,” as well as derivatives thereof, may mean to include, be included within, interconnect with, contain, be contained within, connect to or with, couple to or with, be communicable with, cooperate with, interleave, juxtapose, be proximate to, be bound to or with, have, have a property of, or the like. Other definitions of certain words and phrases are provided throughout this disclosure.
Throughout the specification, claims, and drawings, the following terms take the meaning explicitly associated herein, unless the context clearly dictates otherwise. The term “herein” refers to the specification, claims, and drawings associated with the current application. The phrases “in one embodiment,” “in another embodiment,” “in various embodiments,” “in some embodiments,” “in other embodiments,” and other variations thereof refer to one or more features, structures, functions, limitations, or characteristics of the present disclosure, and are not limited to the same or different embodiments unless the context clearly dictates otherwise. As used herein, the term “or” is an inclusive “or” operator, and is equivalent to the phrases “A or B, or both” or “A or B or C, or any combination thereof,” and lists with additional elements are similarly treated. The term “based on” is not exclusive and allows for being based on additional features, functions, aspects, or limitations not described, unless the context clearly dictates otherwise. In addition, throughout the specification, the meaning of “a,” “an,” and “the” include singular and plural references.
Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limit of that range and any other stated or intervening value in that stated range is encompassed within the invention. The upper and lower limits of these smaller ranges may independently be included in the smaller ranges is also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the present disclosure.
Generally, unless otherwise indicated, the materials for making the invention and/or its components may be selected from appropriate materials such as metal, metallic alloys (high strength alloys, high hardness alloys), composite materials, ceramics, intermetallic compounds, plastic, 3D printable materials, thermosetting compounds, polymers, resins, concrete, foam, rubber, cotton, cloth, and the like.
The foregoing description, for purposes of explanation, uses specific nomenclature and formula to provide a thorough understanding of the disclosed embodiments. It should be apparent to those of skill in the art that the specific details are not required in order to practice the invention. The embodiments have been chosen and described to best explain the principles of the disclosed embodiments and its practical application, thereby enabling others of skill in the art to utilize the disclosed embodiments, and various embodiments with various modifications as are suited to the particular use contemplated. Thus, the foregoing disclosure is not intended to be exhaustive or to limit the invention to the precise forms disclosed, and those of skill in the art recognize that many modifications and variations are possible in view of the above teachings.
These and other changes can be made to the embodiments in light of the above-detailed description. In general, in the following claims, the terms used should not be construed to limit the claims to the specific embodiments disclosed in the specification and the claims, but should be construed to include all possible embodiments along with the full scope of equivalents to which such claims are entitled. Accordingly, the breadth and scope of a disclosed embodiment should not be limited by any of the above-described embodiments, but should be defined only in accordance with the following claims and their equivalents.
This application is a continuation of U.S. patent application Ser. No. 17/588,195 filed on Jan. 28, 2022 in the United States Patent and Trademark Office, now U.S. Pat. No. 11,458,514 issued on Oct. 4, 2022.
Number | Name | Date | Kind |
---|---|---|---|
20130330681 | Sacks | Dec 2013 | A1 |
20140166059 | Kosugi et al. | Jun 2014 | A1 |
20170333955 | Jasper et al. | Nov 2017 | A1 |
20180161827 | Jasper et al. | Jun 2018 | A1 |
Number | Date | Country | |
---|---|---|---|
20230241652 A1 | Aug 2023 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17588195 | Jan 2022 | US |
Child | 17900717 | US |