Modular, space-efficient structures mounting multiple electrical devices

Information

  • Patent Grant
  • 10651633
  • Patent Number
    10,651,633
  • Date Filed
    Wednesday, March 29, 2017
    7 years ago
  • Date Issued
    Tuesday, May 12, 2020
    4 years ago
Abstract
A modular, space-efficient support structure mounts multiple electrical devices. The structure is modular to allow for subsequent addition and removal of electrical devices by adding and removing primary structural elements coupled for structural efficiency. The structure is deployable in many locations without reconfiguration and has reduced dependence on local site conditions. The structure uses non-permanent construction methods to facilitate rapid assembly, disassembly, re-deployment and re-use of components. Multiple electrical devices such as transformers are mounted at elevation on device mounting columns. The electrical devices are interconnected to each other in parallel or series with connectors mounted on the top portion of the device to allow maintenance clearance underneath. The arrangement of the electrical devices maximizes the density of the devices while maintaining vertical, lateral and radial safety clearances. The electrical devices are arranged in a symmetrical fashion around the primary structural element for symmetrical load distribution.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates to systems and methods for mounting electrical equipment at an electrical substation.


2. Prior Art


An electrical substation is a part of an electrical generation, transmission, and distribution system. Substations transform voltage from one voltage level to another, or perform any of several other important functions. Between the generating station and consumer, electric power may flow through multiple types of substations with different functions operating at different voltage levels.


Electrical substations are expensive and time-consuming to deploy. An electrical substation may cost $60 million and take more than 5 years to deploy. The permit approval process may require multiple ecological and safety studies which slow down the overall deployment. An electrical substation usually contains multiple, heavy current and voltage-controlling devices such as transformers, capacitors, switches, etc. Electrical substations employ many different methods for mounting these current-controlling devices. Electrical substations are usually designed for a specific, permanent deployment and cannot easily be disassembled and re-deployed at a second location.


The current and voltage-controlling devices need to be mounted so they are easy to install and maintain. Each device has specific mounting requirements which include: operating voltage levels, orientation, device spacing and visibility or signal path. Each deployment of the support structure requires a full understanding of the local environmental, seismic and geotechnical conditions. The design of the mounting structure depends on the loads it will experience and the local geotechnical conditions. The soils ability to resist the load often has the greatest effect on the structural solution and selection.


Using the normal, industry-standard, structural-design practice, each support is designed to meet the unique conditions for the location it will be deployed in. This approach results in structural members, foundation mounting and anchoring conditions that are unique to each location and which cannot be disassembled and redeployed in another location without significant construction and reconfiguration costs. Most of the currently available designs either have a strong dependency on the local soil conditions requiring substantial customization or are structurally inefficient needing expensive and time consuming construction methods.



FIG. 1 (Prior Art, U.S. Pat. No. 6,215,653) shows a modular substation design that is easy to erect and disassemble. The transformer 23 is mounted on a central section of base 2 and flanked by structures 4 and 5. The design requires the base of the structure to be tied to all structural elements. In situation where numerous electrical devices need to be installed, the base restricts maintenance access. The beams needed to tie the columns together require steel members that are fairly high, e.g., ˜12″ or more. The beams become physical access barriers for maintenance equipment. Maintenance equipment cannot and should not drive over those structural members after they have been installed.


The maintenance requirement can be met by vertically mounting the electrical devices at an elevation. FIG. 2 (Prior Art, U.S. Pat. No. 3,556,310) shows vertical mounting of the electrical devices 13. However in medium-voltage (MV) and high-voltage (HV) applications, the electrical devices have horizontal spacing requirements that prevent close coupling of the device 13 and the structural members 12. While FIG. 5 (Prior Art, U.S. Pat. No. 4,277,639) addresses the use of electrical devices at elevation with the horizontal spacing requirement, it also supports each device with its own independent support. Transformer 1 is supported by insulators 14 and 16; and transformer 2 is supported by insulator 24 and 26. This method leads to a structurally inefficient design when used in a configuration that requires multiple electrical devices. Each structure supports the device and resists the loads independently.



FIG. 3 (Prior Art, U.S. Pat. No. 4,710,850) and FIG. 4 (Prior Art, U.S. Pat. No. 4,577,826) show a completely different approach. Both provide electrical isolation in HV and MV applications through the use of an insulated, elevated substation. These implementations require the use of structural insulators as the primary force resisting elements. In FIG. 3 stories 2, 4, 6, 8, 10 and 12 are connected to each other by outdoor-type insulators 27 which are connected to the node elements 24. In FIG. 4, platform 4 is supported by insulator columns 6. These structural insulators are expensive to use and are designed to meet the specific requirements of the application and location. Using the same structural insulators in a different application requires substantial redesign and cost.


Mounting MV and HV electrical devices at elevations provides safe access to the devices for installation, replacement and maintenance. The electrical device spacing clearance distances depend on the voltage levels. The spacing clearance provides electrical insulation and reduces mutual thermal radiation effects. The clearance and spacing requirements of electrical devices lead to tall structures with large foot prints. The larger structures result in longer spans and higher elevations requiring heavier and stronger structural members to resist the forces. The larger members result in higher fabrication and construction costs. Additionally, the larger footprints lead to secondary problems regarding land availability, acquisition, zoning constraints and permit requirements.


Currently mounting MV and HV devices on elevated structures is limited as in FIG. 5 (Prior Art, U.S. Pat. No. 4,277,639). FIG. 5 shows an electrical device centrally mounted on a structure and supported by insulators to achieve the elevation and clearance requirements. The electrical conductors are mounted horizontally and to the mid body of the device. The vertical, wind and earthquake loads on the transformer devices 1 and 2 are transferred to the A-frame structure through the use of insulators, 12, 16, 24 and 26. In order to install numerous devices a minimum amount of clearance is required radially from the conductors 4 and 5 to other conductors, structural components or devices on a different phase. While this option is viable for a small number of device deployments, it leads to accessibility and enlarged foot print issues when numerous devices need to be deployed in series or parallel.


There is a need for an electrical substation support structure that solves the described issues.





BRIEF DESCRIPTION OF THE DRAWINGS

The drawings are made to point out and distinguish the invention from the prior art. The objects, features and advantages of the invention are detailed in the description taken together with the drawings.



FIG. 1 shows a representation of a modular electrical substation from U.S. Pat. No. 6,215,653 (prior art).



FIG. 2 shows a representation of an elevated structure for mounting electrical devices from U.S. Pat. No. 3,556,310 (prior art).



FIG. 3 shows a representation of a tower design for high voltage systems from U.S. Pat. No. 4,710,850 (prior art).



FIG. 4 shows a representation of a stand structure for supporting electrical high voltage equipment from U.S. Pat. No. 4,577,826 (Prior art).



FIG. 5 shows a representation of a high voltage device suspended by insulators from a structure from U.S. Pat. No. 4,277,639 (prior art).



FIG. 6 shows an exemplary, modular, space-efficient structure for mounting multiple electrical devices.



FIG. 7 shows an exemplary foundation connection for the modular, space-efficient structure.



FIG. 8 shows an example of vertically mounted transformers with an exemplary vertical clearance.



FIG. 9 shows exemplary beam and column connections.



FIG. 10a shows exemplary Safety Clearance Zones for vertically mounted transformers.



FIG. 10b shows exemplary Safety Clearance Zones for horizontally mounted transformers.



FIG. 10c shows exemplary Vertical Safety Clearance Zones for horizontally mounted transformers.



FIG. 10d shows exemplary Vertical Safety Clearance Zones for stacked horizontally mounted transformers.



FIG. 11 shows an exemplary, modular, space-efficient electrical substation.



FIG. 12 illustrates an alternate embodiment of the invention.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

There is a need for an electrical substation support structure supporting multiple heavy electrical devices with a standard, modular approach that speeds the permit approval process; provides easy addition and removal of devices; re-usability with easy assembly, disassembly, and redeployment; easy maintenance access; satisfy different electrical device mounting and clearance requirements; and offer low-cost by being inexpensive to construct, structurally efficient and having a compact footprint.


The modular, space-efficient structure uses multiple device mounting columns to mount electrical equipment such as transformers or other electrical devices at an elevation. Such electrical devices might be step down transformers and/or other devices for distribution of the power received at a substation for local distribution at one or more lower voltages, though may include current and/or voltage affecting devices for such purposes as lightning and other spike suppression, power factor correction, phase balancing, harmonics suppression, loop current suppression and switching, to name some of the other electrical devices that might be used. The device mounting columns are bolted to (or cast into) a typically concrete foundation. The device mounting columns receive structural support from bolted or welded horizontal beams and reinforcement struts when required. Having a variable number of device mounting columns that can be added or subtracted provides modularity. Using bolted connections (and to a lesser extent welded connections) makes it easy to assemble and disassemble. Welded connections can be pulled apart and the components can usually be re-used. The columns, beams and reinforcement struts are made of light-weight steel making them low-cost and easy to transport. The modular, space-efficient structure uses standard components designed for applicable conditions making it possible to use the same components in different locations with different soil conditions. The modular, space-efficient structure supports multiple electrical devices, such as transformers, mounted radially from the device mounting columns to meet the necessary device clearances. The elevated radial arrangement minimizes the overall substation footprint, allows ease of access for maintenance or installation and provides structural stability by balancing the lateral forces applied to each column. This standard approach to substation construction simplifies the permit approval process reducing the overall deployment schedule and makes it possible to have temporary substation installations.



FIG. 6 shows an exemplary, modular, space-efficient structure for mounting electrical devices in areas with seismic activity or high winds. The primary load bearing sections 100 and 250 are connected with zero or more expansion sections 200 connected in the middle. Expansion sections 200 are added or removed to match the number of required electrical devices. In this example structure, primary load bearing section 100, expansion section 200 and primary load bearing section 250 are bolted to one or more concrete foundation blocks. The primary load bearing section 100 consists of device mounting columns, 101, 102, 103 and load bearing columns 104, 105, and 106 that provide structural support and vertical support for electrical device mounting. The columns are tied together in a grid fashion with horizontal beams 108-114 and column cross-beams 115-116. Connections from beams to columns are shop fabricated bolted connections designed to act as a rigid moment resisting connections. Reinforcement struts 117, 118 and their equivalent mounted between the beams and the columns supplement the moment resisting connections and provide additional moment resistance as required.


In this example the load bearing columns 104, 105, 106, 251, 252 and 253 provide structural support for the frame and do not support electrical device mounting. The device mounting columns 101, 102 and 103 provide electrical device mounting. Load bearing columns 104, 105, 106, 251, 252 and 253 are bolted and/or cast into the foundation like the device mounting columns 101, 102 and 103. Expansion device mounting columns 201, 202 and 203 of expansion section 200 provide additional electrical device mounting capability. Expansion section 200 provides additional structural resistance through expansion horizontal beams 204, 205, and 206. The connections between primary load bearing section 100, expansion section 200 and primary load bearing section 250 are also moment resisting bolted connections with expansion reinforcement struts 209 and 210 to provide additional structural support.


The electrical devices (303 shown in FIG. 8) are mounted on device mounting columns corresponding to any of device mounting columns 101, 102 and 103 and connected to different phases of the power grid using an electrical conductor (315 of FIG. 10a). Each primary load bearing section 100 and expansion section 200 has three vertical columns because the power grid has different electrical conductors for each of its three different phases. In the embodiments disclosed herein, an even number of electrical devices are supported, though that is not a limitation of the invention, as in any embodiments shown herein, an odd number of devices and supporting insulators could be used.



FIG. 6 provides a specific embodiment well-suited to environments with potentially high horizontal stresses caused by seismic activity, winds, soil conditions or other factors. Many other embodiments are possible. In a second embodiment the device mounting columns are anchored by being embedded in concrete as steel piles. In an environment with lower horizontal stresses the reinforcement struts 117 and 118 and expansion reinforcement struts 209 and 210 can be omitted and the column to beam connections need not be rigid moment resisting connections using shop fabricated bolted connections. In an environment with even lower horizontal stresses, the horizontal beams 108-114, column cross-beams 115-116 and expansion horizontal beams 204-208 can be omitted altogether.


The modular, space-efficient structure has to fit within the designated property area. Primary load bearing section 100 and expansion section 200 may have a different number of device mounting columns if that is necessary to fit within the designated property area. In one example, primary load bearing section 100 and expansion section 200 have six electrical device mounting columns each where the electrical devices attached to the first 3 columns have electrical connections to the electrical devices attached to the second 3 columns.


Under difficult environment conditions, primary load bearing section 100 and expansion section 200 may have more structural support columns and/or fewer electrical device mounting columns.



FIG. 7 shows an exemplary foundation connection for the modular, space-efficient structure. Each vertical column has column anchor flange 300 and is connected to the foundation 398 using multiple column anchor bolts 399. In one embodiment the size of the column anchor flange 300, number of bolt holes, length of column anchor bolts 399 and material choice are designed to meet applicable design conditions. In another embodiment the modular, space-efficient structure is constructed from a small number of component choices. In this embodiment the structure designer can select from a small number of possible columns of different types, beams of different types, connections of different types and bolts of different types to meet different requirements. The different column types will have different material, different flanges and different numbers of bolt holes. The vertical column may optionally be embedded in the concrete foundation 398 as shown in FIG. 7. Embedding the vertical column in the concrete foundation makes it more difficult to re-use the vertical column but the vertical column can be sawn off at the base or dug out of the concrete. When the vertical column is embedded in the concrete foundation the column anchor flange 300 is optional.


Table 1 summarizes the components shown in FIGS. 6 and 7.











TABLE 1






FIG. Label:
Description








100
Primary load bearing section



101-103
Device mounting columns



104-106
Load bearing columns



108-114
Horizontal beams



115-116
Column cross-beams



117, 118
Reinforcement struts



200
Expansion section



201-203
Expansion device mounting columns



204-208
Expansion horizontal beams



209, 210
Expansion reinforcement struts



300
Column Anchor flange



398
Foundation



399
Column Anchor bolt



250
Primary load bearing section



251-253
Load bearing columns









The modular, space-efficient structure supports electrical devices with different mounting orientations and different safety clearances. FIG. 8 shows an example of vertically mounted transformers with an exemplary vertical clearance. FIG. 8 shows an electrical device 303 mounted on device mounting column 301. In this first embodiment of the support structure the electrical device 303 is supported vertically by the device mounting column 301 using a beam and tie assembly, 309 and 312 respectively which may be in the form of a simple truss structure, and vertical apparatus support and electrical insulator 302. As a truss structure, tie member 312 is always in tension, so can be a beam like member or even a cable or chain (tension resisting only). The electrical device 303 is further insulated from device mounting column 301 using lateral device structural support and electrical insulator 305. Lateral device structural support and electrical insulator 305 connects to the device mounting column 301 using structural support attachment 313. Structural support attachment 313 is typically an industry-standard weld or a bolted bracket. In a second embodiment of the support structure, shown later in FIG. 10c, the device is supported directly by the device mounting column 301 through the use of one or more insulators. The device mounting columns, 301, are themselves supported using support beams and reinforcement struts, 310 and 311 respectively in a grid type. Electrical device 303 has the required minimum vertical safety clearance 308. FIG. 8 shows conductor 315 connected to the power grid and to the top of electrical devices 303 allowing unrestricted maintenance access from below.



FIG. 9 shows exemplary horizontal beam and device mounting column connections via expanded top, front and side views. Table 2 summarizes the components that connect the horizontal beams to a device mounting column. Bent plate 401 is welded to the cross beam and bolted to longitudinal through-plate 402 and transverse through-plate 403. The transverse through-plate 403 passes through the column supporting cross beam, and is staggered from the longitudinal through plates 402. Reinforcement strut 408 connects to the device mounting column by welding bent plate 405 to the reinforcement strut and then bolting bent plate 405 to through-plate 407. Reinforcement strut 408 connects to the horizontal beam by welding bent plate 405 to the reinforcement strut and then bolting bent plate 405 to through-plate 404. The connection component dimensions including thicknesses, size and shape depend on the electrical devices being mounted.










TABLE 2





FIG. Label:
Description







401
Bent plate welded to cross arm, bolted to through plate


402
Longitudinal through plates


403
Transverse through plates


404
Through plates for reinforcement strut


405
Bent plate welded to brace, bolted to plates


406
Transverse knife plate through column supporting cross



arm, staggered from longitudinal through plates


407
Through plates for reinforcement strut


408
Reinforcement strut










FIG. 10a shows exemplary safety clearance zones for vertically mounted transformers. Electrical devices 303 are mounted on device mounting column 301 using lateral device structural support and electrical insulator 305 which also provides electrical isolation. The primary structural element, device mounting column 301 is symmetrically loaded around the vertical axis to reduce unbalanced loads on the structural element. This in turn reduces the amount of material needed to resist the forces acting on the structure.


The modular, space-efficient structure uses multiple electrically isolating beams, struts or lateral device structural support and electrical insulators 305 to provide lateral and vertical support. The insulators also provide the lateral distance needed to meet clearance requirements to other devices and device mounting column 301, beam 309 and support beam 310. The lateral and vertical insulators are mounted radially on device mounting column 301 with a structural support attachment 313 or equivalent. The lateral device structural support and electrical insulators 305 are arranged to maximize the density of devices in a horizontal plane and reduce the interstitial spacing 306 while maintaining each device's radial and horizontal spacing clearance 304, horizontal spacing clearance 307, and lateral spacing clearance 314. In order to minimize the interstitial space and maximize the device density, the radial arrangement of the devices is quadrangular, hexagonal, octagonal or any symmetric configuration around their vertical axis.


The modular, space-efficient structure uses electrical conductors 315 mounted on the upper portion of the electrical device, 303, to provide access and reduce the clearance requirements to the lower portion of the required minimum vertical safety clearance 308. The electrical conductors 315 can be single, double or multiple conductors and typically connect to the power grid, and are connected to each electrical device 303 in a series or parallel configuration.


Table 3 summarizes the components shown in FIGS. 10a, 10b, 10c and 10d.










TABLE 3





FIG. Label:
Description







301
Device mounting column


302
Vertical apparatus support and electrical insulator


303
Electrical device


304
Radial and horizontal spacing clearance


305
Lateral device structural support and electrical insulator


306
Interstitial spacing


307
Horizontal spacing clearance


308
Required minimum vertical safety clearance


309
Beam


310
Support beam


311
Reinforcement strut


312
Tie member


313
Structural support attachment


314
Lateral spacing clearance


315
Electrical Conductors


316
Device vertical spacing clearance requirement










FIG. 10b shows a top view with exemplary safety clearance zones for horizontally mounted transformers. Horizontally mounted transformers have a larger footprint as made evident in the top view. FIG. 10b shows electrical device 303 supported by device mounting column 301 and the interstitial spacing 306 and required radial and horizontal spacing clearance 304, horizontal spacing clearance 307, and lateral spacing clearance 314. Minimizing the interstitial spacing 306 gives a greater density of transformers and minimizes the required footprint. The distance between vertical device mounting columns 301 is selected to minimize the interstitial spacing 306.



FIG. 10c shows a side view with exemplary vertical safety clearance zones for horizontally mounted transformers. Electrical devices 303 are mounted using lateral device structural support and electrical insulator 305 which also provides electrical isolation. The required minimum vertical safety clearance 308 defines the minimum elevation for mounting the transformer. FIG. 8 shows the first embodiment of the support structure with the electrical device 303 supported vertically by the device mounting column 301 with a lateral device structural support and electrical insulator 305 anchored to a beam and tie assembly, 309 and 312 respectively. FIG. 10c shows a second embodiment of the support structure, the device is supported by the device mounting column 301 through the use of multiple lateral device structural support and electrical insulators 305 connected to structural support attachment 313 without the beam and tie assembly 309 and 312.



FIG. 10d shows exemplary vertical safety clearance zones for stacked horizontally mounted transformers. In this embodiment the electrical devices 303 are still arranged symmetrical about device mounting column 301 but also stacked vertically to increase the number of transformers mounted in a given footprint. In addition to required minimum vertical safety clearance 308 there is a device vertical spacing clearance requirement 316. Note that the possibility of stacking of electrical devices is not limited to this embodiment.


If onsite assembly is to be by way of bolted together assemblies, then the component parts will typically have predrilled, bolt together flanges welded onto the respective component parts as necessary for simple, bolt together assembly at the installation site. With or without flanges, parts to be bolted together would be predrilled, again for simple, bolt together assembly at the installation site. If a welded assembly is to be used at the substation site, then again any welding flanges needed would be pre-mounted (typically welded) onto any component parts as required. In either case, these approaches minimize the expensive on-site labor and other costs. Also, by simply providing the component parts in a limited range of sizes, each selected for assembling substations using equipment of corresponding capacities, and merely replicating structures during onsite assembly as required for the required substation, a highly modular, low cost, and particularly if realized by a bolted together assembly, is readily expandable by merely replicating assembled structures, or can be disassembled for moving, etc. as desired. In addition, the components may be proportioned to meet electrical component spacing requirements and sufficiently elevate the electrical components to allow servicing and/or replacement from below without disturbing other components just for access purposes.



FIG. 11 shows an exemplary, modular, space-efficient electrical substation. Electrical conductors 315 connect the power grid to multiple electrical devices 303. FIG. 12 illustrates an alternate device mounting column 301 extending vertically and anchored at a lower end to a foundation, and alternate electrical device mounting structure, electrical device and insulator support. In particular, the device mounting column is a tapered, tubular structure with eight equally spaced, outward extending arms supporting electrical devices 303, each on a pair of insulators 302, the electrical devices having their electrical connections on the sides thereof instead of the top thereof. Like the embodiments of FIGS. 10a and 10b, and embodiments like FIG. 12 can be positioned with minimum spacing by rotating the outward extending arms supporting electrical devices on one mounting column 22.5 degrees with respect to the outward extending arms supporting electrical devices on the adjacent mounting column.


Thus the present invention has a number of aspects, which aspects may be practiced alone or in various combinations or sub-combinations, as desired. Also while certain preferred embodiments of the present invention have been disclosed and described herein for purposes of exemplary illustration and not for purposes of limitation, it will be understood by those skilled in the art that various changes in form and detail may be made therein without departing from the spirit and scope of the invention.

Claims
  • 1. A structure supporting electrical devices at an electrical substation of a power grid, comprising: a device mounting column extending vertically and anchored at a lower end to a foundation or anchor;a first set of N electrical devices connected to a phase of the power grid;a first set of at least N electrical insulators, at least one of the first set of at least N electrical insulators being coupled to a respective one of the first set of N electrical devices and the device mounting column, and supporting and providing electrical insulation for the respective one of the first set of N electrical devices;the N electrical devices as supported by the first set of at least N electrical insulators being equally radially distributed around a vertical axis of the device mounting column;a second set of N electrical devices connected to the phase of the power grid; anda second set of at least N electrical insulators, at least one of the second set of at least N electrical insulators being coupled to a respective one of the second set of N electrical devices and the device mounting column, and supporting and providing electrical insulation for the respective one of the second set of N electrical devices above the first set of N electrical devices;the second set of N electrical devices as supported by the second set of at least N electrical insulators also being equally radially distributed around the vertical axis of the device mounting column;wherein N is greater than three.
  • 2. The structure of claim 1 wherein the first and second sets of electrical devices are transformers respectively mounted horizontally.
  • 3. The structure of claim 1 wherein at least one of the first set of at least N electrical insulators extends laterally from the device mounting column to a respective one of the N electrical devices.
  • 4. The structure of claim 1 further comprising a first electrical device mounting structure on the device mounting column, the first electrical device mounting structure having a first plurality N of arms extending outward in a plurality of directions therefrom and equally spaced around the vertical axis of the device mounting column; at least one of the first set of at least N electrical insulators coupled to vertically support and provide electrical insulation for a respective one of the first set of N electrical devices is coupled to the device mounting column through a respective outward extending arm.
  • 5. The structure of claim 4 wherein at least one of the first set of at least N electrical insulators extend downward from the electrical device mounting structure on the respective one of the outward extending arms.
  • 6. The structure of claim 5 further comprising at least N additional insulators, each of the additional insulators extending between the device mounting column and a respective one of the N electrical devices.
  • 7. The structure of claim 4 wherein the electrical device mounting structure is a first beam and tie assembly.
  • 8. The structure of claim 1 wherein the electrical devices are high-voltage current and/or voltage affecting electrical devices.
  • 9. The structure of claim 1 wherein the device mounting column has a device mounting column anchor flange on the lower end thereof for bolting to an anchor at a site of the electrical substation.
  • 10. The structure of claim 1 wherein the device mounting column is anchored at the lower end to the foundation by being embedded in concrete.
  • 11. The structure of claim 1 wherein the device mounting column is anchored at a lower end to a foundation by a steel pile.
  • 12. The structure of claim 1 further comprising: additional device mounting columns extending vertically and anchored at a respective lower end thereof.
  • 13. The structure of claim 12 further comprising horizontal beams interconnecting the device mounting columns.
  • 14. The structure of claim 13 wherein the interconnections between the horizontal beams and the device mounting columns are bolted interconnections.
  • 15. The structure of claim 13 wherein the interconnections between the horizontal beams and the device mounting columns are welded interconnections, wherein the welded interconnections can be broken for reuse of the horizontal beams and the device mounting columns.
  • 16. The structure of claim 13 further comprising reinforcement struts angularly disposed and extending between the horizontal beams and the device mounting columns to provide additional structural support.
  • 17. The structure of claim 12 wherein the device mounting columns number three or integral multiples of three.
  • 18. The structure of claim 17 wherein the power grid is a multi-phase electrical power distribution system and wherein the electrical devices are electrically connected in series or in parallel in each phase, and wherein the electrical connections are at the top or sides of the electrical devices.
  • 19. The structure of claim 18 wherein electrical connections between electrical devices comprise single, double or multiple conductors.
  • 20. The structure of claim 1 wherein electrical connections to the electrical devices are at the top or sides of the electrical devices.
  • 21. A system, comprising: a first of the structure of claim 1 and a second of the structure of claim 1, the first and second of the structure of claim 1 being positioned side by side, the electrical devices supported on the device mounting column of the second of the structure of claim 1 being rotated about the vertical axis of the device mounting column of the second of the structure of claim 1 relative to the electrical devices supported on the device mounting column of the first of the structure of claim 1, whereby minimum electrical device horizontal spacing clearance is achieved with a minimum device mounting column spacing.
  • 22. The system of claim 21 wherein the first set of N electrical devices of the first of the structure of claim 1 and the first set of N electrical devices of the second of the structure of claim 1 are connected to different phases of the power grid.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Patent Application No. 62/326,240 filed Apr. 22, 2016.

US Referenced Citations (163)
Number Name Date Kind
2237812 De Blieux Apr 1941 A
2551841 Kepple et al. May 1951 A
3556310 Loukotsky Jan 1971 A
3704001 Sloop Nov 1972 A
3750992 Johnson Aug 1973 A
3913003 Felkel Oct 1975 A
4025824 Cheatham May 1977 A
4057736 Jeppson Nov 1977 A
4103853 Bannan Aug 1978 A
4164345 Arnold et al. Aug 1979 A
4200899 Volman Apr 1980 A
4277639 Olsson Jul 1981 A
4286207 Spreadbury et al. Aug 1981 A
4323722 Winkelman Apr 1982 A
4367512 Fujita Jan 1983 A
4514950 Goodson, Jr. May 1985 A
4562360 Fujimoto Dec 1985 A
4577826 Bergstrom et al. Mar 1986 A
4710850 Jahn et al. Dec 1987 A
4821138 Nakano et al. Apr 1989 A
4903927 Farmer Feb 1990 A
5006846 Granville et al. Apr 1991 A
5023768 Collier Jun 1991 A
5032738 Vithayathil Jul 1991 A
5193774 Rogers Mar 1993 A
5461300 Kappenman Oct 1995 A
5469044 Gyugyi et al. Nov 1995 A
5513061 Gelbien et al. Apr 1996 A
5610501 Nelson et al. Mar 1997 A
5648888 Le Francois et al. Jul 1997 A
5844462 Rapoport et al. Dec 1998 A
5884886 Hageli Mar 1999 A
5886888 Akamatsu et al. Mar 1999 A
5986617 McLellan Nov 1999 A
6088249 Adamson Jul 2000 A
6134105 Lueker Oct 2000 A
6147581 Rancourt et al. Nov 2000 A
6215653 Cochran et al. Apr 2001 B1
6233137 Kolos et al. May 2001 B1
6335613 Sen et al. Jan 2002 B1
6486569 Couture Nov 2002 B2
6727604 Couture Apr 2004 B2
6831377 Yampolsky et al. Dec 2004 B2
6895373 Garcia et al. May 2005 B2
6914195 Archambault et al. Jul 2005 B2
7090176 Chavot et al. Aug 2006 B2
7091703 Folts et al. Aug 2006 B2
7105952 Divan et al. Sep 2006 B2
7193338 Ghali Mar 2007 B2
7352564 Courtney Apr 2008 B2
7460931 Jacobson Dec 2008 B2
7642757 Yoon et al. Jan 2010 B2
7688043 Toki et al. Mar 2010 B2
7834736 Johnson et al. Nov 2010 B1
7835128 Divan et al. Nov 2010 B2
7932621 Spellman Apr 2011 B1
8019484 Korba et al. Sep 2011 B2
8249836 Yoon et al. Aug 2012 B2
8270558 Dielissen Sep 2012 B2
8310099 Engel et al. Nov 2012 B2
8401709 Cherian et al. Mar 2013 B2
8441778 Ashmore May 2013 B1
8497592 Jones Jul 2013 B1
8680720 Schauder et al. Mar 2014 B2
8681479 Englert et al. Mar 2014 B2
8816527 Ramsay et al. Aug 2014 B1
8825218 Cherian et al. Sep 2014 B2
8867244 Trainer et al. Oct 2014 B2
8872366 Campion et al. Oct 2014 B2
8890373 Savolainen et al. Nov 2014 B2
8896988 Subbaiahthever et al. Nov 2014 B2
8922038 Bywaters et al. Dec 2014 B2
8957752 Sharma et al. Feb 2015 B2
8996183 Forbes, Jr. Mar 2015 B2
9099893 Schmiegel et al. Aug 2015 B2
9124100 Ukai et al. Sep 2015 B2
9124138 Mori et al. Sep 2015 B2
9130458 Crookes et al. Sep 2015 B2
9172246 Ramsay et al. Oct 2015 B2
9178456 Smith et al. Nov 2015 B2
9185000 Mabilleau et al. Nov 2015 B2
9207698 Forbes, Jr. Dec 2015 B2
9217762 Kreikebaum et al. Dec 2015 B2
9246325 Coca Figuerola et al. Jan 2016 B2
9325173 Varma et al. Apr 2016 B2
9331482 Huang May 2016 B2
9563218 Hall et al. Feb 2017 B2
9659114 He et al. May 2017 B2
9843176 Gibson et al. Dec 2017 B2
20020005668 Couture Jan 2002 A1
20020042696 Garcia et al. Apr 2002 A1
20030006652 Couture Jan 2003 A1
20030098768 Hoffmann et al. May 2003 A1
20040153215 Kearney et al. Aug 2004 A1
20040217836 Archambault et al. Nov 2004 A1
20050052801 Ghali Mar 2005 A1
20050073200 Divan et al. Apr 2005 A1
20050194944 Folts et al. Sep 2005 A1
20050205726 Chavot et al. Sep 2005 A1
20060085097 Courtney Apr 2006 A1
20070135972 Jacobson Jun 2007 A1
20070250217 Yoon et al. Oct 2007 A1
20080103737 Yoon et al. May 2008 A1
20080157728 Toki et al. Jul 2008 A1
20080177425 Korba et al. Jul 2008 A1
20080278976 Schneider et al. Nov 2008 A1
20080310069 Divan et al. Dec 2008 A1
20090243876 Lilien et al. Oct 2009 A1
20090281679 Taft et al. Nov 2009 A1
20100026275 Walton Feb 2010 A1
20100177450 Holcomb et al. Jul 2010 A1
20100213765 Engel et al. Aug 2010 A1
20100302744 Englert et al. Dec 2010 A1
20110060474 Schmiegel et al. Mar 2011 A1
20110095162 Parduhn Apr 2011 A1
20110106321 Cherian et al. May 2011 A1
20110172837 Forbes, Jr. Jul 2011 A1
20120105023 Schauder et al. May 2012 A1
20120146335 Bywaters et al. Jun 2012 A1
20120205981 Varma et al. Aug 2012 A1
20120242150 Ukai et al. Sep 2012 A1
20120255920 Shaw Oct 2012 A1
20120293920 Subbaiahthever et al. Nov 2012 A1
20130002032 Mori et al. Jan 2013 A1
20130033103 McJunkin et al. Feb 2013 A1
20130044407 Byeon et al. Feb 2013 A1
20130094264 Crookes et al. Apr 2013 A1
20130128636 Trainer et al. May 2013 A1
20130166085 Cherian et al. Jun 2013 A1
20130169044 Stinessen et al. Jul 2013 A1
20130182355 Coca Figuerola et al. Jul 2013 A1
20130184894 Sakuma et al. Jul 2013 A1
20130200617 Smith et al. Aug 2013 A1
20130249321 Gao et al. Sep 2013 A1
20130277082 Hyde et al. Oct 2013 A1
20130345888 Forbes, Jr. Dec 2013 A1
20140008982 Powell et al. Jan 2014 A1
20140025217 Jin et al. Jan 2014 A1
20140032000 Chandrashekhara et al. Jan 2014 A1
20140111297 Earhart et al. Apr 2014 A1
20140129195 He et al. May 2014 A1
20140132229 Huang May 2014 A1
20140153383 Mabilleau et al. Jun 2014 A1
20140188689 Kalsi et al. Jul 2014 A1
20140203640 Stinessen Jul 2014 A1
20140210213 Campion et al. Jul 2014 A1
20140246914 Chopra et al. Sep 2014 A1
20140247554 Sharma et al. Sep 2014 A1
20140266288 Trabacchin et al. Sep 2014 A1
20140268458 Luciani et al. Sep 2014 A1
20140312859 Ramsay et al. Oct 2014 A1
20140327305 Ramsay et al. Nov 2014 A1
20150012146 Cherian et al. Jan 2015 A1
20150029764 Peng Jan 2015 A1
20150051744 Mitra Feb 2015 A1
20150184415 Bushore Jul 2015 A1
20150226772 Kreikebaum et al. Aug 2015 A1
20150244307 Cameron Aug 2015 A1
20150270689 Gibson et al. Sep 2015 A1
20160036231 Ramsay et al. Feb 2016 A1
20160036341 Jang et al. Feb 2016 A1
20170163036 Munguia et al. Jun 2017 A1
20170169928 Carrow et al. Jun 2017 A1
Foreign Referenced Citations (13)
Number Date Country
660094 Mar 1987 CH
103256337 Aug 2013 CN
203668968 Jun 2014 CN
2002-199563 Jul 2002 JP
2005-045888 Feb 2005 JP
2015-086692 May 2015 JP
10-1053514 Aug 2011 KR
WO-2008082820 Jul 2008 WO
WO-2014035881 Mar 2014 WO
WO-2014074956 May 2014 WO
WO-2014099876 Jun 2014 WO
WO-2015074538 May 2015 WO
WO-2015119789 Aug 2015 WO
Non-Patent Literature Citations (26)
Entry
Amin, S. M., et al., “Toward a Smart Grid: Power Delivery for the 21st Century”, IEEE power & energy magazine, vol. 3, No. 5, (Sep./Oct. 2005), pp. 34-41.
Angeladas, Emmanouil , “High Voltage Substations Overview (part 1)”, Siemens, (Jan. 24, 2013), pp. 1-8.
Aquino-Lugo, Angel A., “Distributed and Decentralized Control of the Power Grid”, Ph.D. Dissertation, University of Illinois at Urbana-Champaign, (2010), 172 pp. total.
Dash, P. K., et al., “Digital Protection of Power Transmission Lines in the Presence of Series Connected FACTS Devices”, IEEE Power Engineering Society Winter Meeting, (2000), pp. 1967-1972.
Divan, D. M., “Nondissipative Switched Networks for High-Power Applications”, Electronics Letters, vol. 20, No. 7, (Mar. 29, 1984), pp. 277-279.
Funato, Hirohito , et al., “Realization of Negative Inductance Using Variable Active-Passive Reactance (VAPAR)”, IEEE Transactions on Power Electronics, vol. 12, No. 4, (Jul. 1997), pp. 589-596.
Gyugyi, Laszlo , et al., “Status Synchronous Series Compensator: A Solid-State Approach to the Series Compensation of Transmission Lines”, IEEE Transactions on Power Delivery, vol. 12, No. 1, (Jan. 1997), pp. 406-417.
Gyugyi, Laszlo , et al., “The Interline Power Flow Controller Concept: A New Approach to Power Flow Management in Transmission Systems”, IEEE Transactions on Power Delivery, vol. 14, No. 3, (Jul. 1999), pp. 1115-1123.
Kavitha, M. , et al., “Integration of FACTS into Energy Storage Systems for Future Power Systems Applications”, International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, vol. 2, Issue 2, (Feb. 2013), pp. 800-810.
Kumbhar, Mahesh M., et al., “Smart Grid: Advanced Electricity Distribution Network”, IOSR Journal of Engineering (IOSRJEN), vol. 2, Issue 6, (Jun. 2012), pp. 23-29.
Lambert, Frank C., “Power Flow Control”, ISGT Europe, 2014, Istanbul, Turkey, (Oct. 13, 2014), pp. 1-15.
Lehmkoster, Carsten , “Security Constrained Optimal Power Flow for an Economical Operation of FACTS-Devices in Liberalized Energy Markets”, IEEE Transactions on Power Delivery, vol. 17, No. 2, (Apr. 2002), pp. 603-608.
Mali, Bhairavanath N., et al., “Performance Study of Transmission Line Ferranti Effect and Fault Simulation Model Using MATLAB”, International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering, vol. 4, Issue 4, (Apr. 2016), pp. 49-52.
Mutale, Joseph , et al., “Transmission Network Reinforcement Versus FACTS: An Economic Assessment”, IEEE Transactions on Power Systems, vol. 15, No. 3, (Aug. 2000), pp. 961-967.
Ramchurn, Sarvapali D., et al., “Putting the ‘Smarts’ into the Smart Grid: A Grand Challenge for Artificial Intelligence”, Communications of the ACM, vol. 55, No. 4, (Apr. 2012), pp. 86-97.
Reddy, D. M., et al., “FACTS Controllers Implementation in Energy Storage Systems for Advanced Power Electronic Applications—A Solution”, American Journal of Sustainable Cities and Society, Issue 2, vol. 1, (Jan. 2013), pp. 36-63.
Renz, B. A., et al., “AEP Unified Power Flow Controller Performance”, IEEE Transactions on Power Delivery, vol. 14, No. 4, (Oct. 1999), pp. 1374-1381.
Ribeiro, P. , et al., “Energy Storage Systems”, Chapters 1-2.4 of Section entitled “Energy Storage Systems” in Electrical Engineering—vol. III, edited by Kit Po Wong, Encyclopedia of Life Support Systems (EOLSS) Publications, (Dec. 13, 2009), 11 pp. total.
Schauder, C. D., et al., “Operation of the Unified Power Flow Controller (UPFC) Under Practical Constraints”, IEEE Transactions on Power Delivery, vol. 13, No. 2, (Apr. 1998), pp. 630-639.
Siemens SAS, “Portable Power Solutions, “Plug and play” High Voltage E-Houses, skids and mobile high voltage substations up to 420 kV”, (Nov. 2015), 8 pages total.
Swain, S. C., et al., “Design of Static Synchronous Series Compensator Based Damping Controller Employing Real Coded Genetic Algorithm”, International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering, vol. 5,.No. 3, (2011), pp. 399-407.
Xue, Yiyan , et al., “Charging Current in Long Lines and High-Voltage Cables—Protection Application Considerations”, 67th Annual Georgia Tech Protective Relaying Conference, Atlanta, Georgia, (May 8-10, 2013), pp. 1-17.
“International Search Report and Written Opinion of the International Searching Authority dated Jun. 28, 2017; International Application No. PCT/US2017/025802”, (dated Jun. 28, 2017).
Albasri, Fadhel A. et al., “Performance Comparison of Distance Protection Schemes for Shung-FACTS Compensated Transmission Lines”, IEEE Transactions on Power Delivery, vol. 22, No. 4, Oct. 2007, pp. 2116-2125.
Bhaskar, M. A. et al., “Impact of FACTS devices on distance protection in Transmission System”, 2014 IEEE National Conference on Emerging Trends in New & Renewable Energy Sources and Energy Management (NCET NRES EM), Dec. 16, 2014, pp. 52-58.
Samantaray, S. R. , “A Data-Mining Model for Protection of FACTS-Based Transmission Line”, IEEE Transactions on Power Delivery, vol. 28, No. 2, Apr. 2013, pp. 612-618.
Related Publications (1)
Number Date Country
20170310089 A1 Oct 2017 US
Provisional Applications (1)
Number Date Country
62326240 Apr 2016 US