The present patent of invention relates to a modular storage box system for storing core samples in which the samples can be stored both in dense and sandy form, used in particular in the field of mineral sampling from geological exploration activities for subsequent analysis. The purpose of such a system is to increase the internal volume and provide insulation and sealing of storage compartments in the box during sample transport to the storage site, after which the system may be reused for new samplings and transportation of same. Advantageously, such a system aims to facilitate sample handling and storage with a practical and safe transportation thus ensuring the integrity of same.
Various containers with the specific purpose of facilitating sampling, storage and transportation of core samples are currently known in the art, which are usually made up by a box with compartments for arranging samples collected.
Sampling activities in the area of Geology, particularly mineral research activities, basically involve sample extraction, called core samples, from the underground formation to the analysis of same for research and definition of the characteristics making up the rock formation of the area such as mineral or metal content. Such activities are necessary to understand and draw up mineral exploration plans and also to manage the mine's resources, and as such, core samples must be stored during the mine's entire useful life to safeguard information for possible consultations during audits.
This activity is essential as a sampling process since, during that phase, several samples are drawn for further analysis and storage, the organization and safety thereof in such operations being stages that should be observed to avoid interpretation errors in each of the process's phases. The purpose is to draw precise conclusions following lab exams where tests are conducted with given samples.
The boxes used for storage and transport of core samples were initially built in wood, later evolving to plastics and, during this process, several adaptation issues have arisen naturally.
Briefly, sampling process starts by extracting core samples using a specific drilling tool designed to obtain continuous rock samples in cylindrical shape and varied diameters depending on the properties of the soil's first levels or altered or non-weathered rocks, which normally need a larger diameter tool to ensure drilling quality as the bore direction may be affected at that more brittle interval.
After extraction, samples are stored intact in the compartment of a duly identified storage box. Then, one or more boxes containing the samples are transported to the storage and analysis site.
Larger diameter samples are removed from the box and split (sawed) to half of their diameter so as to obtain two portions in semicircle shape, one portion being sent to laboratory analysis and the other is stored for record.
Nowadays, to improve the use of space in warehouses, some companies and sampling teams use two types of boxes in different sizes varying in wall height according to the diameter of sample being stored. Thus, higher wall boxes are used to store and transport recently extracted samples and lower wall boxes are used to store split samples.
Disadvantageously though, moving samples from one box to another increases labor time as two different storing means need to be managed at the same time besides making it difficult to store samples as, at the time of collection, the boxes themselves are used to write down relevant information on the sampling process and on the sample itself, such information having then to be transferred to the new box and, consequently, increasing the processing time of each sample which, already intact and duly identified, must be then transferred to the new box.
One solution for such a drawback is to use the same box used for storage, the one with lower walls, provided with a device to increase its internal volume, that is, a box extender. The widened walls allow the box to store larger diameter samples soon after sampling and, at the time of storage, the extender is simply removed to store the half diameter samples.
Box or package extenders for storing several products are therefore currently known, said extenders being designed for the purpose of increasing the internal volume of such boxes or packages in order to facilitate transport and storage of products.
An example of such extender is disclosed in the patent document PI0000561-4 A, filed on Jun. 1, 2000, and titled “PLASTIC BOX EXTENDER”, which introduces a single piece extender for boxes storing agricultural products comprising columns on their outer walls to withstand mechanical efforts and a flange located on the inner walls to help connect another package in sequence.
Disadvantageously though, even presenting a box extender, patent document PI0000561-4 does not present a suitable configuration to be used in core sample boxes, since said extender only allows the box side walls to be extended, and inner partition walls would also need to project to extend walls making up compartments where samples were to be stored thus preventing a sample from involuntarily trespassing other compartments during transport.
Besides, in order to maintain sample integrity, proper connection and sealing means between the compartment walls are required so that, when extender is used, sample material does not advance over other sample materials thus causing a cross contamination, which could damage and make samples unusable which, in turn, would generate unnecessary losses and rework on the sampling activities.
A further disadvantage is that the connection means introduced by the extender disclosed in the patent document PI0000561-4 is ineffective during transportation of boxes with extenders as both the box and the extender are connected by a single flange, and a simple and unintentional movement can disconnect them and damage or even make the content stored inside the box unusable. Moreover, as the flange is joined to the surface it projects itself over a small area; it does not have the required mechanical strength thus making it more fragile. Consequently, the flange becomes weak with time and makes the extender useless.
Furthermore, sample boxes currently known in the art usually have an elongated configuration and handles located on the smaller ends. When the boxes receive the samples, their overall mass is considerably high, thus making it difficult to handle in terms of ergonomics, both for transport and storage or access to boxes stored in warehouses having proper infrastructure for stacking boxes in higher levels for space maximization purposes. Handling the boxes causes physical discomfort or even physical injury to the user, which is against the ergonomics labor standards in the workplace.
Aiming to solve these drawbacks, the present invention proposes a “MODULAR STORAGE BOX SYSTEM FOR STORING CORE SAMPLES”, the system comprising a combination of elements so as to increase the box internal volume which provides a practical and effective storage of samples from sampling to storage; connection and sealing means between the modular box compartments to prevent the unintentional switching of sample materials thus ensuring the integrity of same from their collection to transport and analysis; and locking means between the elements comprising the system to ensure safe and practical locking.
Another object of the present invention is to provide a system capable of making the definitive storage of samples more efficient by reducing the space required for each sample and increasing storage capacity in warehouses.
Another object of the present invention is to provide ergonomic and conveniently positioned handles which make it easier to handle the modular box without compromising the users physical integrity since the samples have mostly a heavy mass.
Another object of the present invention is to provide a partition with suitable geometry to facilitate its connection and, at the same time, prevent the unintentional switching of material between the samples stored in a same compartment.
Yet another object of the present invention is to provide a system which is manufactured using sustainable and highly durable material, preferably plastic, as samples need to be stored for a long period of time while keeping their integrity.
Advantageously, the present invention provides a practical storage of samples, keeping the relevant information of same on the modular boxes the samples are to be permanently stored thus reducing the processing time for each sample.
Also advantageously, the present invention allows part of the elements comprising the modular box, after definitive storage of samples, to be reused in subsequent sampling and sample transport processes, thus optimizing sampling activities.
Briefly, the present invention describes a modular storage box system for storing core samples formed from the combination of at least one main base with an extending module so as to form a modular box for storing and transporting core samples in ideal conditions which complies with the different diameters of samples from their extraction to the final storage.
The main base and the extending module comprise connection areas to be fitted together and seal the compartments where the samples are to be stored and connection means for connecting said extending module to the base.
In a preferred embodiment of the present invention the extending module is responsible for connecting the two bases; in another embodiment the extending module is connected to the base on its lower portion and can be provided with a cover.
The system further comprises ergonomic handles on the sides of the base to make it easier to handle the modular box and partitions in a new constructive way fitted together so as to separate and isolate the core samples in sample intervals according to the size of the collected sample.
Schematic figures of a particular embodiment of the invention are presented below, the dimensions and proportions of which are not necessarily the actual ones as the figures are intended only to present its various aspects informatively, and whose protective scope is determined solely by the scope of the appended claims.
As illustrated in the accompanying figures, the modular storage box system (1) for storing core samples (not shown) is formed from the combination of at least one main base (2) with an extending module (3 or 30) so as to form a modular box (C) for storing and transporting core samples (not shown) in ideal conditions which complies with the different diameters of samples from their extraction to the final storage.
As illustrated in
As illustrated in
It will be thus understood that both the main base (2) may comprise a connecting area with male fittings (25) and the extending module (3 or 30) may comprise a connecting area with female fittings (25), and vice-versa, without departing from the technical and functional concept proposed by the present invention.
Preferably, as illustrated in
The extending module (3 and 30), as illustrated in
As illustrated in
Thus, the extending module (3 and 30) is designed to be connected to the base (2) so that the side tabs (3B) overlap the side recesses (2B) and, at the same time, the locking ledges (2A) insert into the locking holes (3A) to form the connection means (5).
In addition, said channels (33) of the extending module (3 and 30) are arranged on the base (2) inner walls (21) so as the adjacent walls (34) of each channel (33) are positioned on the notches (26) of each inner wall (21) thus sealing the compartments (20). Thus, structural grooves (35) of channels (33) also ensure that the adjacent walls (34) do not move and each inner wall (21) is perfectly fitted to the inside of each channel (33) ensuring sealing efficiency and preventing cross-contamination between different samples (not shown) stored in a same box (C).
As illustrated in
Thus, each locking hole (3A) of the extending module (3) receives a locking ledge (2A) from each base (2), while each side recess (2B) from each base (2) receives a side tab (3B) of the extending module (3) so as to interlock, by interference fit, and form the modular box (C). Simultaneously, vertical tabs (37) of the extending module (3) are aligned over the base (2) tabs (22).
Preferably, as illustrated in
After core samples (not shown) are stored into the modular box (C) for further transport and laboratory analysis, the extending module (3) is removed to be reused. For that purpose, said extending module (3), along with the second base (2) located in an upper position, is disconnected from the first base (2) in the lower position, the later containing the samples and duly identified for storage.
As illustrated in
In another embodiment of the present invention, as illustrated in
The extending module (30) is provided with locking ledges (3C), side recesses (3D), locking holes (3A) e side tabs (3B). The extending module (30) is therefore designed to be connected to the base (2) so that the side tabs (3B) overlap the side recesses (2B) and, at the same time, the locking ledges (2A) insert into the locking holes (3A) to form the connection and locking means (5). Said extending module (30) is also designed to receive a cover (4) provided with locking holes (4C) and side tabs (4D) so that said locking holes (4C) receive the locking ledges (3C), while said side tabs (4D) are positioned into the side recesses (3D) thus connecting and locking the cover (4) to said extending module (30) by interference fit.
Preferably, as illustrated in
After the core samples (not shown) are stored into the modular box (C) for further transport and laboratory analysis, the extending module (30) is removed to be reused. For that purpose, said extending module (30) and the cover (4), are disconnected from the base (2), the cover (4) being directly connected to the base (2) containing the samples to be stored.
Alternatively, two or more boxes (C) may be stacked for storage, transport and handling during sampling activities, each base (2) being able to be connected to the extending module (30) positioned immediately below so that a single cover (4) is connected to the last extending module (30) of the stack formed.
Advantageously, the extending module (3 and 30) configuration, particularly the connecting areas (25) and the fact that the locking areas (36) are evenly distributed along the outer walls (31) of the extending module (3 and 30) provide a greater strength to the structure when handling it since samples (not shown) are provided with a heavy mass, thus making the modular box (C) set a practical and safe device.
As illustrated in
As illustrated in
As illustrated in
Said partition (SA) is provided with an opening (S5) arranged on the extended top surface (S2) so as to make it possible to fit a partition (SB) by its lower end (S6).
Partition (SA) body (S1) is provided with enlarged side tabs (S10) projecting up to a median area on the body (S1), in which tabs (S10) are responsible for tightly connecting partition (SA) to the base (2) side tabs (22) so as to prevent unintentional movements of partition (SA) while handling the box (C), according to a fitting simulation shown in
Partition (SB) body (S1) is also provided with enlarged side tabs (S10) projecting close to the body (S1) lower end (S6) which are responsible for connecting the partition (SB) to the side tabs (37) of an extending module (3), according to a fitting simulation shown in
Alternatively, a first partition (SA) can receive a second partition (SA) by connecting the second partition (SA) lower end (S11) provided with a recess (S5).
Alternatively, partition (B) can simply be housed in any compartment (32) of the extending module (3 or 30) and be directly fitted into the partition (SA) opening (S5) which is fitted in the base (2) compartments (20).
As illustrated in
Advantageously, positioning of anatomical handles (23) on the side walls (24) of the base (2) makes it easier to lift boxes (C) for handling and transportation and during stacking of boxes in warehouses since the heavy weight resulting from samples (not shown) stored inside the boxes (C) makes it difficult to move them. Thus, anatomical handles (23) allow operators to hold the box (C) on both sides for ease displacement as the professionals are able to share weight while engaged in the collection, handling and storage activities.
Finally, in a preferred embodiment of the present invention, said modular box (C) is fully made from recycling material so as to contribute with a sustainable production.
A person skilled in the art will promptly infer, from the description and the drawings depicted, various ways of carrying out the invention without departing from the scope of the accompanying claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/BR2016/050174 | 7/27/2016 | WO | 00 |