Field of the Invention
The invention relates to the field of aquaculture farming. More particularly, the invention relates to a raft used for aquaculture farming.
Discussion of the Prior Art
Aquaculture farming, mariculture, or aquafarming, is the farming of aquatic organisms, such as oysters and mussels. Much of this farming occurs in open bodies of water where there are inherent difficulties from harsh weather and sea conditions.
What is needed is a submersible aquafarming raft that can be submerged in times of extreme weather or drift ice.
The invention is a submersible raft that may be used for aquaculture farming. The discussion of the submersible raft may hereinafter refer to a device that is used in aquaculture farming, and more specifically, mussel farming, but it is understood that the submersible raft may also be used for other purposes.
The submersible raft according to the invention is an apparatus that is well-suited for use in aquaculture in ocean waters. Depending on the prevailing weather conditions, the raft is held in the water so that a raft surface is at or near the surface of the water, or is submerged below the surface.
The submersible raft has a buoyancy support structure and a submersion control system that together allow the raft to be held selectively at or near the surface level of the water or submerged to a pre-determined depth. The buoyancy support structure includes a number of pontoons that are coupled to each other by a plurality of pontoon ties so as to form a flat support system for the raft surface. The raft surface is conventional, in that it is formed of surface elements, such as a plurality of planks, steel members, or timbers, or sheets of some suitable material, laid out across the buoyancy support structure. Ropes are attached to the surface elements and hang down below the raft surface.
The submersion control system includes air and water control devices that allow the weight of the raft to be changed, in order to achieve a desired level of buoyancy. The pontoons are floodable with water, thereby increasing the weight of the structure and forcing it below the surface of the water. The amount of air and water in the pontoons is controllable, so that the raft may be submerged to a specific depth below the surface. The control system also includes one or more airbags in each pontoon which are inflatable or deflatable by means of an air hose.
The intended use of the raft according to the invention is as an aquaculture farm, for example, to grow mussels, oysters, etc. The aquatic cultures attach to the ropes or containers that are suspended from the raft surface. These aquaculture farms are typically in ocean waters and the rafts used are therefore exposed to the elements of the weather.
Rough seas, ice, etc., can cause damage to the rafts and cause the aquatic cultures to fall from the ropes, particularly when the raft is at the surface of the water. Submerging the raft below the surface is an effective way to prevent crashing waves or ice from damaging the rafts. Depending on the particular weather that is forecast, the raft according to the invention may be submerged to the appropriate and desired depth.
The present invention is described with reference to the accompanying drawings. In the drawings, like reference numbers indicate identical or functionally similar elements. The drawings are not drawn to scale.
The present invention will now be described more fully in detail with reference to the accompanying drawings, in which the preferred embodiments of the invention are shown. This invention should not, however, be construed as limited to the embodiments set forth herein; rather, they are provided so that this disclosure will be complete and will fully convey the scope of the invention to those skilled in the art.
Referring again to
In normal operating conditions, the raft 100 is held at or near the surface of the water. The ropes 70 are light at the early bivalve growth stage and the airbladders 34 in the pontoons 31 are filled with air to hold the raft 100 at or near the surface. When necessary or desired, the floats 60 and float lines 62 are attached to the raft 100 and the raft 100 is submerged as desired.
The submersion control system 40 is used to submerge the raft 100. First, at least one of the air inlet/out valves 38 that allow air to enter and exit the airbladder 34 is actuated. Water entering the pontoon 31 through at least one of the one-way valves 39 forces air out of the airbladder 34 and through the air inlet/out valve 38, which is connected to an air hose (not shown). One or more pontoons 31 are flooded with water as needed, to submerge the raft 100 to a desired depth. In the embodiment shown, the air inlet/out valves 38 are actuated by levers 33 shown in
To raise a submerged raft 100 to the surface, the air hose that is connected to the air inlet/outlet valve 38 is attached to an air compressor and air is pumped into the airbladder 34, which forces water out of the pontoon 31 through the air/water outlet valves 42.
In the embodiment shown, the buoyancy support structure 30 includes three pontoons 31. The outer pontoons 31A, 31C, each have one airbag 34. The middle pontoon 31B has three airbags 34A, 34B, 34C. When newly seeded with bivalves, the raft 100 is relatively light, so, to submerge it, a significant amount of weight needs to be added to the raft. In this case, all pontoons 31 are filled with water, which forces the air out of the buoyancy support structure 30 via the valves in the control system 40 and through the air hose. When the bivalves are half grown, however, the raft 100 is heavier and less weight needs to be added. In this case, one or more of the airbags in the middle pontoon 31B are filled with air while the outer pontoons 31A and 31C are filled with water to submerge the raft surface 10 to the proper depth. When bivalves are fully grown, all three airbags 34A, 34B, 34C in the middle pontoon 31B are filled with air, and the outside pontoons 31A and 31C are filled with water. To raise the submerged raft 100, the air bags 34 are inflated.
In one embodiment, a set of air hoses (not shown) is used to provide air to the air bladders 34. One end of the air hose is connected to the air bladder 34 and the other is connected to the air hose manifold 37. Another air hose is connected to the manifold 37 and is attached to a buoy (not shown) and secured to the raft 100 by an acoustic release device 35, such as Sonardyne Oceanographic Systems acoustic release transponder shown schematically in
In another embodiment, one end of an air hose is connected to an air bladder 34, the air hose is secured to the float line 62 that connects the float 60 to the raft 100, and the non-connected end is secured to the float 60 to ensure access at the surface of the water. The non-connected end may then be attached to an air compressor to provide air to the air bladder 34.
The submersible raft 100 may operate in a passive mode. When the floats 60 are connected to the raft surface 10 the submersion control system 40 may be actuated at the surface thereby submerging the raft 100 to a desired depth. Once submerged, the buoyancy support structure 30 and the floats 60 provide enough buoyancy to support the aquatic cultures as they grow for an extended period of time. The submersible raft 100 may also operate in an active mode, whereby additional air inlet/out valves 38 are actuated and, to raise the raft to a shallower depth, air is provided to the additional air bladders 34, or to submerge the raft 100 to a greater depth air would be released from the additional air bladders 34 allowing water to enter the buoyance support structure 30.
In one embodiment, the saddle 90 is welded directly to pontoon 31 for additional structural support. In another embodiment, the bottom of the saddle 90 has a neoprene pad 94 that fits against the contour of the pontoon 31, so that the strap 50 and fastener are prevented from slipping radially on the pontoon 31.
The ropes 70 are suspended from the raft surface 10, which may be constructed with surface elements, such as a plurality of planks, steel members, timbers, or with a sheet of suitable material. In the embodiment shown, the raft surface 10 is shown constructed of a plurality of surface elements fastened to the top of the pontoon ties 20 as shown in
In another embodiment, the raft surface 10 has a plurality of upper support members 14, shown in
It is understood that the embodiments described herein are merely illustrative of the present invention. Variations in the construction of the submersible raft may be contemplated by one skilled in the art without limiting the intended scope of the invention herein disclosed and as defined by the following claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2015/023252 | 3/30/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/153405 | 10/8/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4615301 | Maekawa | Oct 1986 | A |
4876985 | Marcum | Oct 1989 | A |
5273473 | Allen | Dec 1993 | A |
5299530 | Mukadam | Apr 1994 | A |
5655938 | Huguenin | Aug 1997 | A |
5823132 | Donavon | Oct 1998 | A |
6044798 | Foster | Apr 2000 | A |
6286460 | Gudbjornsson | Sep 2001 | B1 |
6481378 | Zemach | Nov 2002 | B1 |
6520115 | Boyd | Feb 2003 | B2 |
6892672 | Klein | May 2005 | B2 |
7661389 | Tuerk | Feb 2010 | B2 |
9278731 | Canela | Mar 2016 | B1 |
20100287829 | Bussell | Nov 2010 | A1 |
20170013809 | Heasman | Jan 2017 | A1 |
20170027136 | Newell | Feb 2017 | A1 |
Number | Date | Country | |
---|---|---|---|
20160286767 A1 | Oct 2016 | US |