The present invention deals with a modularization of subsea system equipment for connecting lines with more than one umbilical that are used for the control, production and injection of chemicals in the well. In addition, the present invention also deals with the assembly, installation and recovery of said equipment.
A Subsea Distribution Equipment—Subsea Distribution Assembly (SDA) (01), illustrated by
In order to illustrate the subsea system using the SDA (01),
Subsea Distribution Equipment can be classified as a hydraulic system and/or electrical control. The hydraulic system comprises low hydraulic flow rate control, medium hydraulic flow rate control, high hydraulic flow rate control, chemical injection, and lift and mixed gas injection. The electrical control comprises high voltage control, low voltage control, optical control and mixed control (Eletrical Flying Lead+Steal Flying Lead). Both the hydraulic and electrical control systems have a similar structure.
As can be seen in
SDA (01) includes many parts, modules, a great amount of tubbings and welds, therefore presenting different hydraulic and electrical schemes for each project. In addition, the weight of the state-of-the-art SDA (01) is around 28 tons, and the SDA (01) has large sizes, which increases the difficulty of the manufacturing processes, e.g., the welds must be qualified. The large size and weight of the SDA (01) further render transport and installation on the seabed complicated. In addition, the hydraulic and electrical schemes are specific to each SDA project (01).
The present invention deals with the modularization of the structure, hydraulic instrumentation and electrical instrumentation in blocks (10) in order to reduce the manufacturing time, size and weight of the SDA. Moreover, the present invention provides an optimization of the assembly, installation and an increase in the efficiency of subsea oil production systems.
The present invention deals with the modularization of the SDA components, wherein the present invention provides a block (10) comprising a metallic structure (11), wherein said structure presents an area for the installation of panels (13) in all its extension. At a first end, the block (10) has a panel (16) with a hole (15), wherein this hole (15) will receive the umbilical cable, at its second end, the block (10) comprises a section that will connect to a second block (10). The present invention further provides the modularization of hydraulic instrumentation and electrical control. The modularization of the hydraulic instrumentation of the present invention comprises a pipe mat (19) composed of parallel tubes (20), wherein said parallel tubes (20) have connectors (21), according to the desired application in a subsea system, said pipe mat (19) being able to receive distribution module pipes. The electrical control of the present invention comprises QUADS, wherein said QUADS comprises junction boxes, electrical connectors (32) and Field Assembled Cable Termination (FACTs) (31).
The modularization of these three components, structure, hydraulic instrumentation and electrical control disclosed by the present invention allows its application in subsea control and distribution equipment. Among the embodiments of the present invention, two subsea distribution equipment (40) and (50) will be disclosed, wherein the distribution equipment (40) comprises a connection with an eye joint (90) between two blocks (10), and the distribution equipment (50) comprises a flange gasket (56) between two blocks (10). The present invention also deals with the assembly of subsea distribution equipment (40) and (50) on the deck of a vessel (80), as well as the installation of said subsea distribution equipment (40) and (50) on seabed, and the recovery and reinstallation of subsea distribution equipment (40).
The present invention can be well understood from the accompanying illustrative figures, which in a schematic and non-limiting way of the invention represent:
As can be seen in
As can be seen in
Still referring to
In a first embodiment of the structure (10), as can be seen in
In a second embodiment, illustrated by
It is important to note that the panel format (13) varies according to the type of electro-hydraulic function and the control logic required for each field of production or injection of oil and gas.
It is noted that the block (10) allows several configurations, given the possibility of installing specific panels according to the needs of the subsea equipment design.
As previously mentioned, the present invention also comprises the modularization of hydraulic instrumentation, said hydraulic instrumentation, illustrated by
Next, the sequence of a hydraulic configuration according to the present invention will be illustrated, wherein
After the assembly of the distribution modules (23-26), the couplers (27) are installed in the UTAJ (22), illustrated by
After the assembling of the Logic Caps (28) and (29), the MQC distribution modules (23-26) and the couplers (26) of the UTAJ (22) and the couplers (29) of the Logic Caps (28) and (29), the structure (10) is installed in the hydraulic configuration (30) illustrated by
As can be seen in
[Note that the pipe mat (19) allows configuring several arrangements according to the desired use. The pipe mat (19) connects with the inlet umbilicals, outlet umbilicals, as well as the MQC and Logic caps (LC), in order for the block to obtain a maximum number of functions. If there is a need for a smaller number of functions, the reduction in the number of tubbings (20), fittings, couplers and MQC will be sufficient to adapt the block (10) to the system.
As can be seen in
Using the modularization proposed above, two embodiments for two SDAs (40) and (50), according to the present invention, are provided.
As can be seen in
The two blocks (42) and (43) are mounted on a foundation (47), where said foundation (47) comprises a funnel (67), as can be seen in
It is important to mention that the UTAJ (46) is temporary, after the installation of the SDA (40) on the seabed, a permanent UTAJ (49) is installed, as will be illustrated in
In a second embodiment, illustrated by
These embodiments of SDA (40) and (50) have a lower weight compared to the SDA (01) of the art, wherein SDA (01) weights 28,000 kgf, while the SDA (40) weights 12,000 kgf and the SDA (50) weights 9,000 kgf.
Among the factors that are important for the assembly of the SDA (40) and (50), the limitations of the tower, the gutter, A&R, the tensioners' opening, deflectors, and the sizes of the work floor of a vessel should be highlighted. SDAs (40) and (50) allow their assembly to be carried out on smaller vessels, in order to reduce the cost of renting vessels, since SDAs (40) and (50) have fewer components and consequently less weight. In addition, the SDAs (40) and (50) disclosed herein further are smaller.
Therefore, the present invention allows the assembly of the SDAs using the structure of the existing vessel in order to reduce assembly and installation costs of the SDA. Later, the assembly of the SDA (40) and (50) on a vessel (85) will be disclosed. The assembly is carried out on the deck of the vessel (85) and comprises the following steps, which are illustrated by
a) As can be seen in
b) After the block (43) arrives at the hang-off collar (96), block (42) is transported and then the eye joint (90) is installed, and the block (42) is transported, as shown in
c) After installing the eye joint (90), the eyes (12) of the blocks (42) and (43) are aligned and brought together, so that the eyes (12) are connected through the eye joint (90); as seen in
d) After the blocks (43) and (42) are connected by the eye joint (90), the foundation (47) is installed, wherein the foundation (47) is lifted by the crane (83) and trolley (84) of the PSL. After the verticalization and stabilization of the foundation (47), the cable of the crane (83) is disconnected; then the crane and the trolley (85) move to the moon pool center (92); as can be seen in
e) The foundation (47) is connected to the blocks (42) and (43), wherein the foundation (47) has a pin (71) and the blocks, on its lower portion, have a connector (72) to connect to that pin (71); and the foundation (57) also comprises gaskets (73) to be fastened by screws (49) after connecting the trolley (84); the foundation (47) is released,
f) then, a temporary UTAJ is installed (46) between blocks (42) and (43).
Similarly, the assembly of the SDA (50) follows the subsequent steps, illustrated by
a) As can be seen in
b) Subsequently, as can be seen in
c) The connection between blocks (52) and (54) is made in such a way that the male connector (55) of the block (51) is connected to the female connector (56) of the block (52), as can be seen in
d) After the connection made in the previous step, the foundation (57) is lifted by the crane (83) and trolley (84) of the PSL. After the verticalization and stabilization of the foundation (57), the crane (83) of the PSL and the trolley of the PSL (684 travels to the moon pool center) are removed. As can be seen in
e) the foundation (57) is connected to the SUDs (51) and (52), at that moment, the trolley (84) of the PSL releases the foundation (57), then the Electrical Flying Leads are installed in the SDA (50), as can be seen in
After assembling the SDA (40) and (50), the installation can be done in two ways, using the crane (83) of the vessel (85) or using a buoy (95). In the case of the crane (83) of the vessel (85), the SDA (40 or 50) is lifted by the Snatch block's Master Link and launched overboard. Since the SDA (40 or 50) is launched vertically, the vessel (85) remains motionless so that the SDA (40 and 50) moves in a horizontal direction. After the SDA (40 and 50) reach the seabed, the cables of the crane (83) are removed. The process is illustrated by
In the case of the installation with the buoy (95), the SDA (40 and 50) has on its upper surface a buoy (95) to slow down the lowering of the equipment to the seabed. Due to the fact that the SDA (40 and 50) are launched vertically, the vessel (85) moves so that the equipment (40, 50) when moving downwards, gradually changes its direction to horizontal direction. After the equipment (40, 50) arrives at the seabed, the buoy (95) is removed. The process is illustrated by
Furthermore, after the SDA (40), reaches the seabed, the process of replacing the temporary UTAJ (46) with a permanent UTAJ (49) takes place. As can be seen in
Additionally, the installation of the SDA (40 and 50) of the present invention occurs in a more efficient way in relation to SDA (state of the art) (01),
In case of any problem due to hydraulic or electrical failure, the present invention presents a method of recovering and reinstalling the blocks (42) and/or (43), wherein the recovery method, in an exemplary embodiment of recovery, comprises the following steps I-IV, illustrated by
a) In step I, after removing the UTAJ (46), the recovery tool (100) is installed in the block (42) and unlocks the foundation (47);
b) In step II, the pin (66) of the block (42) is unlocked;
c) In step III, the block (42) is lifted using the umbilical (36) and/or the crane (83) of the vessel;
d) In step IV, the block (42) rotates;
e) In step V, the hook of the crane (83) is disconnected and the elevation to the surface takes place.
After removing the block (42), the procedure for reinstalling the block (42) already recovered or even the installation of a new block (42) is performed, illustrated in
a) In step VI, the recovered block (42) moves downwards, wherein the recovery tool (100) is connected to the eye of the block (42); the foundation, in step VII, the block (42) rotates;
b) In step VIII, the position of the block (42) and the ROV (not shown) are checked in relation to the foundation (47), after said checking, the pin (66) is housed in the funnel (67) of the foundation (47);
c) In step IX, payment of the crane cable and the umbilical cable (36) is performed;
d) In step X, the pin (66) is locked and the recovery tool (100) is unlocked.
The present invention allows a simplification of the subsea field configuration, illustrated by
Among the numerous advantages that the modularization of subsea systems, object of the present invention, provides, those skilled in the art have noted the:
Number | Date | Country | Kind |
---|---|---|---|
BR 102018009962-0 | May 2018 | BR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/BR2019/050178 | 5/14/2019 | WO | 00 |