1. Field of Invention
This invention relates to static structures, and more particularly to an improved modular system for mounting and supporting continuous thermal insulation and exterior cladding on a structure while providing a rain screen between the continuous thermal insulation and the exterior cladding, providing a for vertical and horizontal re-plumbing of exterior cladding and eliminating thermal conductivity from the exterior of the structure to the interior of the structure, and visa-versa.
2. Background and Description of Prior Art
It is well known in the construction field to build structure walls with plural spaced apart parallel vertical studs of wood or metal. The studs communicate, at a bottom end portion with a wall plate that is anchored to a lower support which may be a building foundation, and at an upper end portion with a ceiling plate that extends generally perpendicular to the studs and parallel with the wall plate. A weather resistive barrier formed of material such as asphalt impregnated paper, plastic sheeting, building wrap or similar product may be attached to exterior facing edges of the wall studs, extending from stud to stud and from floor plate to ceiling plate. The weather resistive barrier inhibits flow of air and moisture through any gaps that may exist in the wall assembly.
Sheathing formed of materials such as, but not limited to, plywood, oriented strand board (OSB), wafer board, metallic sheeting, lapboard, gypsum sheathing and the like, may be fastened to the outward facing edges of the wall studs outward of the weather resistive barrier. The sheathing also typically extends from wall stud to wall stud and from the wall plate to the ceiling plate. The sheathing may provide the exterior surface of the structure or may itself be covered with another exterior cladding, exterior covering or exterior coating.
Services such as plumbing, electrical, tele-communications and the like may be provided for by forming generally horizontally aligned holes in the studs and placing conduit, or the like, through the horizontally aligned holes. Thereafter, wiring, pipes and the like may be threaded into and through the conduit or directly through the generally horizontally aligned holes.
Commonly, interior insulation is installed directly against interior facing surface of the weather resistive barrier in the spaces between the wall studs extending from the floor plate to the ceiling plate. The insulation may be of various forms including fiberglass batting, mineral wool, recycled paper, cellulose or the like. The object is to “fill” the space between the wall studs extending from the floor plate to the ceiling plate to limit thermal transfer from the interior of the structure wall to the exterior of the structure wall, and visa versa depending upon the structure's interior operating conditions and the outside climate.
A vapor barrier such as plastic sheeting or the like may be attached to the interior facing edges of the wall studs extending from wall stud to wall stud and from the ceiling plate to the floor plate enclosing the insulation between the wall studs and between the inner vapor barrier and outer weather resistive barrier.
Interior sheathing, such as drywall, gypsum board, paneling or the like is attached to the inward facing edge portions of the wall studs, the floor plate and the ceiling plate and access holes are cut in the interior sheathing to provide access to the electrical boxes, plumbing fittings and the like.
One drawback to such wall assemblies and framing methods is that such methods create thermal bridges in the structure's walls which decrease the effectiveness of the insulation and allows thermal energy to be conducted through the wall assembly from the inside to the outside, and from the outside to the inside depending upon the outside temperatures and the inside operating conditions.
Although insulation is provided between the wall studs between the exterior sheathing and the interior sheathing, the studs themselves provide little insulative value and walls formed by such methods are not thermally efficient because thermal transfer occurs through the wall studs which act as “thermal bridges”. When metal wall studs are used, such as those commonly used in commercial construction, the effectiveness of insulation between the metal wall studs may be reduced by more than fifty percent (50%).
For example, a wall assembly having exterior OSB sheathing and interior gypsum board sheathing supported by plural parallel spaced apart 2″×6″ wood wall studs therebetween and having T-21 rated fiberglass batting type insulation filling the spaces between the wood wall studs has an effective R-rating of approximately R-18 due to the thermal transfer through the wood wall studs. If the same wall assembly is constructed using steel wall studs between the exterior OSB cladding and the interior gypsum board sheathing the effective R-value drops to approximately R-8 because of the thermal loss through the steel wall studs.
Even when additional layers of thermal insulation are placed on the exterior of a structure, (adjacent to the exterior facing surface of the exterior cladding) the insulative effectiveness of such additional insulation is reduced by the common practice of attaching exterior cladding directly to the outward facing surface of the additional insulation with metal attachment means or framing elements that penetrate through the insulation thereunder to engage with the underlying wall studs to provide support for the exterior cladding.
Attaching additional insulation to the exterior of a structure is also known to cause condensation within the wall assembly, which occurs when moisture-laden air comes into contact with a surface having a temperature below the dew-point temperature of the moisture-laden air. In a wall assembly, condensation usually occurs during the cold weather months on the interior facing surface of the exterior cladding when warm moisture laden air from the interior of the structure penetrates the wall assembly and contacts, the cold interior facing surface of the exterior cladding. In warm weather months, the condensation usually forms on the exterior facing surface of the insulation by warm air penetrating the wall from the outside and contacting the cooler exterior facing surface of the insulation which can lead to moisture saturation of the insulation which degrades the effectiveness of the insulation. Without proper design and engineering, attaching insulation directly to the exterior of a structure can be ineffective and can even be detrimental to the useful life of the wall assembly as condensation can lead to rod, no, insect infestation and diminished insulative effectiveness.
Another drawback to such construction methods is the limited number of options for cladding the exterior of a light-frame structure. Although some exterior claddings are available, such as lap board, metal siding, paneling and the like, such cladding is typically limited to light-weight coverings that can be supported by hanger-type wall attachments. Cladding exterior walls with heavy materials such as brick, stone and the like has previously been difficult because the weight of such coverings must be supported by the wall attachments. Overcoming this difficulty leads to additional costs and expenses for larger foundations for vertical support, stronger beams for horizontal support and additional labor costs.
A further drawback to such construction methods is the limited ability to refurbish existing structures by changing the exterior. Generally, when an existing structure is “re-clad” the options available are limited to replacing the existing cladding, or fastening a light weight cladding over the top of the existing cladding. Unfortunately, at times this is not feasible because the existing cladding is too deteriorated to allow stable attachment of the new cladding system. Further, in some instances the vertical “plumbness” or planar nature of an exterior wall might be so poor that it is not feasible or practical to attach a new exterior cladding to the existing structure. Finally, attaching a new exterior cladding has the ability to alter the building's “footprint” sufficiently to cause property line set-back problems by extending the building's walls outwardly.
Evolving construction standards with increased emphasis on energy efficiency, “being green” and limiting greenhouse gas emissions have required construction methods and techniques to likewise change to focus on the energy efficiency of structures. One way to increase the energy efficiency of a structure is to add insulation to the structure walls. Another is to minimize, or if possible eliminate thermal bridges that allow energy loss. A third is to improve moisture management which improves durability and thermal performance of the wall assembly. An even more effective solution is to do all three; add insulation to the structure while effectively managing moisture and eliminating and minimizing thermal bridges. The combination of these efforts is known as “continuous insulation” which is defined in various building codes, such as, but not limited to, ASHREA 90.1 as insulation that is uninterrupted by framing members, except fasteners (screws, nails) and is installed either inboard or outboard of the wall.
The precise definition of “Continuous Insulation” as set forth in the proposed Seattle Energy Code of 29 Apr. 2010 with which Applicants are most familiar, defines continuous insulation as follows:
What is needed is a system that allows exterior cladding to be installed on new structures and onto existing structures, and allows the walls to be insulated having a high degree of effective thermal insulation while minimizing or eliminating thermal bridges and moisture management problems. The system must accommodate a variety of exterior claddings and must allow the structure to be provided with a new appearance, including an appearance of being constructed of masonry, stone or the like. The system must comply with evolving construction standards including the new ASHRE 90.1 standards, including the standards for continuous installation. The system must be economical and efficient and provide sufficient flexibility and structural integrity to allow a user to clad the exterior of a structure as desired and simultaneously preserve the desirable features of known light frame construction methods and systems.
Our system overcomes various drawbacks of known construction apparatus, methods and techniques by providing an improved modular system that preserves user flexibility in the exterior cladding of a structure and maximizes the insulative capabilities by providing a continuously insulated structure having no or minimal thermal bridges that allow thermal energy loss.
Our system provides unique MFI-brackets that are attached to the underlying structure in a manner that the MFI-brackets are thermally isolated from the underlying structure to prevent creation of thermal bridges. The configuration of the MFI-brackets secures nonflammable/noncombustible insulation adjacent to the structure and provides a support for exterior cladding which may be either directly or indirectly mounted thereto.
An exterior cladding supporting system fastened to outward end portions of the MFI-brackets provides a vertical rail or horizontal rail upon which exterior cladding may be releasably secured. A desired exterior cladding may be fastened to exterior facing portions of the vertical rails and/or horizontal rails. Corner elements carrying complimentary sections of the desired exterior cladding are supported by the system at the structure corners.
A rain screen between an Interior facing surface of the exterior cladding and the exterior facing surface of the insulation provides a pressure equalized drain cavity that prevents moisture from passing from the exterior into the wall assembly, reduces condensation, and properly manages moisture. The pressure equalized drain cavity is configured to comply with fire standards to prevent formation of a “chimney” between the Interior facing surface of the exterior wall cladding and the exterior facing surface of the insulation.
Thermal isolators reduce thermal transfer between interconnecting elements by preventing metal to metal connections and the MFI-brackets provide a tapered down “bottle neck” that further reduces thermal transfer between the exterior cladding and the underlying structure and maximizes the effectiveness of the insulation.
Spacers optionally positioned between the thermal isolators and a wall assembly provide a means to adjust and repair the vertical plumbness and planar configuration of a wall assembly.
Our system increases the “effective R Value” of structures by providing a more energy efficient wall structure that loses less heat through thermal conduction through the wall structure.
Our system reduces moisture condensation within the wall assembly effectively manages moisture and minimizes energy losses related to thermal bridging.
Our system meets and exceeds evolving and changing building codes and regulations, such as but not limited to ASHRAE 90.1 standards which are the baseline energy efficiency guidelines used worldwide for promotion of energy efficiency, energy conservation and “greenness”.
Our system allows the exterior of a structure to be clad in a material that has the appearance and texture of masonry, stone and the like, without the weight of such construction and without the required foundation and other underlying support structures and construction costs that would be necessary to support construction with such heavy materials.
Our invention does not reside in any one of the identified features individually, but rather in the synergistic combination of all of its structures, which give rise to the functions necessarily flowing therefrom as hereinafter specified and claimed.
A modular system for continuously insulating exterior walls of a structure and securing exterior cladding to the structure provides thermally isolated MFI-brackets secured to a structure exterior wall that positionally maintain non-flammable insulation adjacent the structure wall and provide a means for mounting exterior wall cladding to the structure. Exterior cladding elements mount directly or indirectly to thermally isolated vertical rails or thermally isolated horizontal rails carried by the MFI-brackets spaced apart from the exterior wall.
In providing such a modular system it is:
a principal object to provide a modular system for insulating a structure wall and supporting exterior wall cladding.
a further object to provide a modular system that minimizes thermal transfer from the exterior of a wall to the interior of a wall and from the interior of a wall to the exterior of a wall.
a further object to provide a modular system that complies with building codes for energy efficiency, thermal energy savings and “greenness”.
a further object to provide a modular system that thermally isolates the MFI-brackets from the structure wall.
a further object to provide a modular system that prevents penetration and passage of moisture into the structure wall.
a further object to provide a modular system that may be installed on a new structure.
a further object to provide a modular system that may be installed on an existing structure.
a further object to provide a modular system that supports a variety of exterior claddings.
a further object to provide a modular system that decreases the cost of insulating a structure and increases the effectiveness of the insulation.
a further object to provide a modular system that allows a structure's exterior walls to be re-plumbed to vertical.
a further object to provide a modular system that allows a structure's exterior walls to be replumbed to vertical and planar.
a further object to provide a modular system that uses interchangeable parts and is mountable vertically as well as horizontally.
a further object to provide a modular system that uses vertical rails and horizontal rails that are interchangeable.
a further object to provide a modular system wherein a cross-sectional profile of the vertical rail and horizontal rail may be modified to accommodate various types of exterior cladding.
a further object to provide a modular system wherein the length of the MFI-brackets may be adjusted to accommodate differing thicknesses of insulation.
a further object to provide a modular system that is completely thermally isolated and satisfies the definitions of “continuous insulation”.
a further object to provide a modular system that is ASHRE 90.1 compliant.
a further object to provide a modular system that supports masonry cladding.
a further object to provide a modular system that supports stone cladding.
a further object to provide modular system that eliminates the need for massive foundations to support the weight of heavy cladding.
a further object to provide a modular system that reduces condensation within the wall assembly and effectively manages moisture within the wall assembly.
a still further object to provide a modular system that meets building standards for continuous insulation.
a further object to provide a modular system having minimal components.
a further object to provide a modular system where the components are assembled at the manufacturer to avoid the need to assemble components at the construction site.
a further object to provide a modular system that is adjustable to replumb walls to vertical and/or planar.
a still further object to provide a modular system that utilizes non-flammable insulation to reduce fire risk.
Other and further objects of our invention will appear from the following specification and accompanying drawings which form a part hereof. In carrying out the objects of our invention it is to be understood that its structures and features and steps are susceptible to change in design and arrangement and order with only one preferred and practical embodiment of the best known mode being illustrated in the accompanying drawings and specified as is required.
Specific forms, configurations, embodiments and/or diagrams relating to and helping to describe preferred embodiments of the invention are explained and characterized herein, often with reference to the accompanying drawings. The drawings and all features shown therein also serve as part of the disclosure of our invention whether described in text or merely by graphical disclosure alone. Such drawings are briefly described below and wherein like numbers refer to similar parts throughout:
The readers of this document should understand that the embodiments described herein may rely on terminology used in any section of this document and other terms readily apparent from the drawings and the language common therefore as may be known in a particular art and such as known or indicated or provided by dictionaries. Widely known and used in the preparation hereof are Webster's Third New International Dictionary (© 1993), The Oxford English Dictionary (Second Edition, ©1989), The New Century Dictionary (© 2001-2005) and the American Heritage Dictionary of the English Language (4th Edition ©2000) all of which are hereby incorporated by reference for interpretation of terms used herein and to more adequately or aptly describe various features, aspects and concepts shown or otherwise described herein.
This document is premised upon using one or more terms for features shown in one embodiment that may also apply to or be combined with other embodiments for similar structures, functions, features and aspects of the invention. Wording used in the claims is also descriptive of the invention and the text of both the claims and the abstract are incorporated by reference into the description entirely.
The readers of this document should further understand that the embodiments described herein may rely on terminology and features used in any section or embodiment shown in this document and other terms readily apparent from the drawings and language common or proper therefore.
As used herein, the term “outer”, its derivatives and grammatical equivalents refers to that portion of our improved modular system that is proximate an exterior of a structure. The term “inner”, its derivatives and grammatical equivalents refers to that portion of our modular system that is proximate an interior of the structure. The term “lower”, its derivatives and grammatical equivalents refers to that portion of our modular system that is vertically proximate a foundation of the structure. The term “upper” its derivatives and grammatical equivalents refers to that portion of our modular system that is vertically distal from the foundation of the structure.
Our modular system for continuously insulating exterior walls of a structure and securing exterior cladding to the structure generally provides MFI-brackets 70, bracket isolators 30, cap isolators 50, shims 180, vertical rails 120, horizontal rails 140, insulation 20 and exterior cladding 16.
As shown in
Each wall stud 14 has an interior facing edge portion 14d and an opposing exterior facing edge portion 14e. Utility holes (not shown) may be formed in each wall stud 14 for passage of conduit (not shown) and the like therethrough. Utility boxes (not shown) for light switches, electrical outlets and the like may be spacedly arrayed about the wall studs 14.
Depending upon the construction technique being used, and the engineering and architectural design for the wall assembly 10, sheathing 21 such as plywood, oriented strand board (OSB), or the like may be attached to the exterior facing edge portions 14e of the wall studs 14 prior to installation of a weather resistant barrier (not shown) and prior to installation of insulation 20.
The insulation 20 is thermally resistant, nonflammable and is non-combustible and in the preferred embodiment is formed of mineral wool, examples of which include, but are not limited to, mineral fiber, rock wool, stone wool and slag wool, some of which are made by the Thermafiber™ Company of Wabash, Ind., and the Roxul™ Company of Milton, Ontario, Canada. Other examples of contemplated insulation 20 include fiberglass insulation, fiberglass batting and rigid thermally isolating panels.
Mineral wool is a known furnace product of molten rock that is formed at a temperature of approximately 1600° C. through which a stream of pressurized air or steam is blown creating a mass of fine, intertwined fibers with a diameter of approximately 6 to 10 μm. Production techniques may involve spinning molten rock on high-speed spinning wheels somewhat like the process used to prepare “cotton candy”. Mineral wool may also contain a binder, often food grade starch and oil to reduce dusting.
The insulation 20 provides a thermal barrier that inhibits thermal conductivity and provides additional protection from moisture penetration to reduce condensation and moisture related problems within the wall 10 assembly. Mineral wool is also widely recognized for its sound absorbing capabilities.
Thickness (interior surface to exterior surface) of the insulation 20 may be varied to adjust for the model MFI-bracket 70 used for the desired thermal resistance, sound absorbance and resistance to moisture penetration. Common thicknesses are 2″, 4″, 6″, 8″ and 10.″ The mineral wool insulation 20 is generally manufactured in rolls or sheets having a common width of 16″, 18″, and 24″ inches that corresponds with common center-to-center spacing of wall studs 14 in a wall assembly 10. Although mineral wool is preferred, it is contemplated that other thermal insulation products, having similar characteristics of fire resistance, sound absorbance, resistance to thermal conductivity, ease of cutting, flame resistance, resistance to moisture penetration, and the like may similarly be used, examples of which include fiberglass insulation, fiberglass batting and rigid insulative foam panels such as those made by DOW® Chemical Company.
MFI-bracket 70, (
Inward taper of the spacing arm 81 from the base 71 toward the tip 89 minimizes thermal conductivity from the base end portion 82 to the tip end portion 84 by reducing surface area. The bends 83, 95 and 98 are preferably 90° right angles, and the MFI-bracket 70 preferably has a uniform thickness of approximately 0.068″ throughout and in the preferred embodiment is formed of 14 gauge steel, chemically treated A792 SS Gr. 50 Class 2 Galvalume×48″ AZ55.
Bracket isolator 30 (
The edge lips 42 of the bracket isolator 30 provide a means for the bracket isolator 30 to be attached to the MFI-brackets 70 at the fabricator to form a single unit which eliminates the need for an installer to handle and align each MFI-bracket 70 with a bracket isolator 30 during installation of the wall system which promotes efficiency.
Cap isolator 50 (
The plurality of fastener holes 100 defined in the tip 89 and first and second wings 94, 97 respectively of the MFI-bracket 70 as well as the elongated fastener slots 58 defined in the cap isolator 50 provide a means for adjustably “plumbing” the wall cladding system to vertical and/or planar by moving the rail 120, 140 closer to the wall assembly 10 or further away from the wall assembly 10 as necessary to change the angle of the rail 120, 140 relative to the wall assembly 10.
The shim 180 (
Button 110 (
In a second preferred embodiment, as shown in
Vertical rail 120 (
The channel 127, 147 defined by the rails 120, 140 has height/width and depth dimensions that correspond with the height, width and depth dimensions of the cap isolator 50. Fastener holes 128, 148, which are preferably “punched” into the rails 120, 140 are spacedly arrayed to align with the fastener slots 58 defined in the cap isolator 50 and the fastener holes 100 defined in the tip 89 and first upper wing 94 and second lower wing 97.
The ventilation holes 131, 151 may also be punched into the rails 120, 140 and the preferred location of the ventilation holes 131, 151 in the rails 120, 140 causes a portion of each ventilation hole 131, 151 to communicate with the bend (not shown) in the rail 120, 140 where the front portions 123, 143 communicate with the sides 125, 126 and top 145 and bottom 146 portions. This preferred location facilitates more effective drying of moisture and condensation and prevents moisture from collecting/condensing along an interior surface (not shown) of the bend (not shown) by providing effective drainage and air circulation.
The rails 120, 140 are thermally isolated from the MFI-bracket 70 by the cap isolator 50 which is carried therebetween about the tip 89 of the MFI-bracket 70. A threaded fastener 62 releasably attaches the rail 120, 140 to the MFI-brackets 70 by extending through one of the plurality of fastener holes 128, 148 defined in the rail 120, 140, through the fastener slot 58 defined by the cap isolator 50 and thereafter engaging with one of the spacedly arrayed fastener holes 100 defined in the tip end portion. 89, first upper wing 94 and/or second lower wing 97 of the MFI-bracket 70.
A rail splice 200 (
The spacing arm 81 has a length 88 (
The vertical rails 120, and the horizontal rails 140, and more particularly the dimensions of the first lateral side 125, (top portion 145) and the second lateral side 126, (bottom portion 146) with the ventilation holes 131, 151 defined therein provide a ventilation channel between an interior facing surface of the exterior cladding 16 and the exterior facing surface of the insulation 20 which is positionally maintained against the wall assembly 10 by the MFI-brackets 70 and the rails 120, 140. Seams (not shown) between adjacent rolls, sheets, panels of insulation 20 are preferably vertically aligned with the MFI-brackets 70 as mounted on the wall assembly 10 to avoid any need to cut the insulation 20 which would add labor and cost for installation of the insulation 20 and the instant improved modular system. Known adhesive insulation tape (not shown) may be applied to the seams (not shown) between adjacent rolls, sheets, panels of the insulation 20 to prevent air flow through the seams. (not shown).
In a further embodiment, as shown in
In one preferred embodiment (
In a still further embodiment (
It is well known that insulation 20 has the tendency to move toward the exterior cladding 16 within the wall assembly 10 due to gravity loads and wind loads that cause pressure changes, fluxuations and reductions within the wall assembly 10. The first and second wings 94, 97 respectively and the rails 120, 140 retain and positionally maintain insulation 20 immediately adjacent the exterior surface of the wall assembly 10 and spaced apart from the interior facing surface of the exterior cladding 16 to create and maintain a space 22 between the insulation 16 and the interior surface of the exterior cladding 16. Insulation clips (not shown) may also be attached to the vertical rails 120 and/or horizontal rails 140 to positionally maintain the insulation 20 frictionally against the wall assembly 10 and spaced apart from interior facing surface of the exterior cladding 16. Space 22 between the exterior facing surface of the insulation 20 and the interior facing surface of the exterior cladding 16 is known, in the industry, as a “rain screen” that prevents moisture from passing from the exterior of the structure to the insulation 20 and allows condensation to naturally occur and naturally dry within the wall assembly 10 without detrimentally affecting the wall assembly 10 and insulation 20.
Our modular system provides a means for adding insulation 20 to the exterior of a structure, it provides a means for mounting exterior cladding 16 on a structure and it provides a means to “plumb” an exterior clad wall assembly 10 to vertical and flatness.
Mounting exterior cladding 16 on a new structure, or refurbishing and adding insulation to the exterior of an existing structure is more economical using our improved system because of the additional adjustability features provided by the plurality of spacedly arrayed fastener holes 100 defined in the MFI-bracket 70 and the optional shims 180. The instant modular system is also more economical because of the interchangeability of the rails 120, 140 and the limited number of components that need to be individually handled by an installer due to the preassembly of the MFI-brackets 70, bracket isolators 30, isolator caps 50 at the manufacturer which reduces installation time and resulting cost.
Having described the structure of our modular system for cladding and insulating exterior walls of a structure, its operation may be understood.
The MFI-bracket 70 and bracket isolators 30 are preferably interconnected with one another at the time of manufacture to increase efficiency and to reduce installation time with the base 71 of the MFI-bracket 70 positionally secured to the front side 31 of the bracket isolator 30 with the edge lips 42 engaging with the top portion 74 and bottom portion 75 of the base 71 of the MFI-bracket 70 and the washer ears 25 folded forwardly over the base 71 to thermally isolate the fastener holes 78 from fasteners 15. Similarly the cap isolators 50 are preferably installed upon the MFI-bracket 70 tip portions 89 at the manufacturer and if washer ears 25 are not carried on the bracket isolator 30 the buttons 110 are attached to the base 71 about the fastener holes 78 at the manufacturer. Attachment of the thermally insulative members 30, 50, 110 to the MFI brackets 70 at the manufacturer increases the efficiency of our system by reducing the number of individual components, and reducing labor time required to install the modular system.
The MFI-brackets 70 and bracket isolators are mapped to a structure exterior wall 13 with the plural MFI-brackets 70 vertically and horizontally aligned so that the fastener holes 78 defined in the base portions 71 are aligned with the wall studs 14 or other structural elements (not shown) of the wall assembly 10. It is imperative that the MFI-brackets 70 be vertically aligned and horizontally aligned to engage with and support the vertical rails 120 or horizontal rails 140.
Fasteners 15 are extended through the fastener hole 26 defined in the washer ear 25 through the fastener holes 78 defined in the MFI brackets 70 and through the fastener holes 40 defined in the bracket isolator 30. The fastener 15 thereafter penetrates the wall assembly 10 and engages with a wall stud 14 or other structural element (not shown) to provide vertical and horizontal support for the MFI bracket 70 and components connected therewith.
The number of MFI-brackets 70 installed on the structure to support the exterior cladding 16 is dependent upon engineering calculations that take into account the weight of the exterior cladding 16, predicted wind loads, traffic vibration, and the like. Because the MFI-brackets 70 interrupt the insulation 20 and affect the performance of the insulation 20 it is preferable to use the minimum number of MFI-brackets 70 that will safely meet required engineering load calculations and safety tolerances.
The process of installing MFI-brackets 70 is continued so that the MFI-brackets 70 are spacedly arrayed and extend from the lowest desired level, to the upper-most desired level of the structure and are spacedly arrayed on the exterior wall 13 in a configuration that will support the rails 120, 140.
After the MFI-brackets 70 have been secured to the exterior wall 13 of the structure, the vertical rails 120 or horizontal rails 140, whichever is to be used to support the exterior cladding 16, are positioned so that the channels 127, 147 defined by the rails 120, 140 respectively fit over and about the cap isolators 50 carried on the tip ends 89 of the MFI-brackets 70. The fastener holes 128, 148 defined in the rails 120, 140 are aligned with the fastener holes 100 defined in the tip 89 and wings 94, 97 of the MFI-bracket 70 and the fastener slots 58 of the cap isolator and fasteners 62 are engaged therewith.
Because rail 120, 140 is thermally isolated from the MFI-bracket 70 by the cap isolator 50, the only metal to metal contact is the fastener 62 securing the rail 120, 140 to the MFI-bracket 70. This minimal metal to metal contact greatly reduces thermal transfer from the rail 120, 140 to the MFI-bracket 70 and visa-versa.
Similar fasteners 62 are inserted through the remaining fastener holes 128, 148 defined in the rails 120, 140, through the fastener slots 58 in the cap isolators 50 and into the fastener holes 100 defined in the MFI-bracket 70 securing the rails 120, 140 to the MFI-brackets 70.
Before the fasteners 62 interconnecting the rails 120, 140 and MFI-brackets 70 are tightened, adjustments should be made to ensure that the vertical rails 120 are vertical, and the horizontal rails 140 are not bowed inwardly or outwardly resulting from non-planer wall assemblies 10. The adjustment is made by adjusting the position of the rails 120, 140 relative to the MFI-bracket 70 by moving the rail 120, 140 more proximate to, or more distal from the exterior wall 13 of the structure which responsively changes the angle of the rail 120, 140 relative to the wall 13. If the vertical plumbness of the vertical rail 120 or the planar nature of the horizontal rail 140 cannot be established using one or more of the plurality of fastener holes 100 defined in the MFI brackets 70 one or more shims 180 may be inserted between the back portion (not shown) of the bracket isolator 30 and the exterior wall 13 to space the bracket isolator 30 and the MFI brackets 70 further away from the exterior wall 13. The fasteners 15 extending through the fastener holes 78 and securing the MFI brackets 70 and bracket isolators 30 to the exterior wall 13 need not be completely removed, but rather need only be loosened sufficiently to allow the shim 180 to be inserted between the bracket isolator 30 and the exterior wall 13. The vertically elongated fastener slots 189 defined in the shim 180 allows the shim 180 to be positioned adjacent above the bracket isolator 30 with the vertically elongated slot 189 aligned with the fasteners 15 and the opening to the vertically elongated fastener slot 189 opening downwardly. Thereafter, the shim 180 may be moved vertically downwardly immediately adjacent the exterior wall 13 so that the fasteners 15 pass into the vertically elongated fastener slot 189 until the shim 180 is positioned immediately behind the bracket isolator 30. Thereafter the fasteners 15 may be retightened to secure the MFI-brackets 70, the bracket isolator 30 and the shim 180 to the exterior wall 13. Plumbness is then checked again. If necessary, additional shims 180 may be installed as necessary behind various bracket isolators 30 to replumb the wall to vertical and/or planar.
Insulation 20, such as, but not limited to mineral wool, is installed adjacent the exterior wall 13 to extend completely between the spaced apart MFI-brackets 70. The wings 94, 97 of the MFI-brackets 70 as well as the rails 120, 140 retain and positionally maintain the insulation 20 immediately adjacent the exterior wall 13 and prevent the insulation 20 from expanding or moving outwardly toward the interior facing surface of the wall cladding 16 to maintain the rain screen 22. If desired, insulation clips (not shown) may be attached to the rails 120, 140 to extend rearwardly therefrom toward the interior of the structure to positionally maintain the insulation 20 in direct physical contact with the exterior wall 13 and spaced apart from the interior facing surface of the exterior cladding 16. A known type of adhesive insulation tape (not shown) may be applied to the insulation 20 to extend over and across any seams (not shown) between adjacent rolls, pieces, panels of the insulation 20 to prevent air flow through the seams. (not shown). Thereafter, the exterior cladding 16 may be fastened directly to the front side portions 123, 143 of the rails 120, 140 with fasteners 23 extending therethrough, or lap siding supports 160 may be attached to the front side portion 143 of the rails 120, 140 with known fasteners and thereafter lap siding may be attached to the lap siding supports 160, similar to the process described above.
If exterior cladding 16 such as lap board, or metal sheeting, is to be fastened directly to the front portion 123, 143 of the vertical rails 120 or horizontal rails 140 the exterior cladding 16 may be placed directly against the front portion 123, 143 and self tapping fasteners 23 are used to attach the exterior cladding 16 by passing the fasteners 23 through the exterior cladding 16 and engaging the vertical rail 120 or horizontal rail 140.
The vertical and horizontal spacing of the vertical rails 120, and horizontal rails 140 is dependent upon the spacing of the MFI-brackets 70 and is preferably the same as or an evenly spaced portion of the height and width dimensions of the elements of exterior cladding 16 so each element of exterior cladding 16 engages with plural rails 120, 140.
Having thusly described our invention, what we desire to protect by Utility Letters Patent and
This Utility patent application claims the benefit of earlier filed U.S. Provisional Patent Application No. 61/784,843, filed on Mar. 14, 2013 and titled IMPROVED MODULAR SYSTEM FOR CONTINUOUSLY INSULATING EXTERIOR WALLS OF A STRUCTURE AND SECURING EXTERIOR CLADDING TO THE STRUCTURE. The entire contents of the earlier filed U.S. 61/789,843 is expressly incorporated herein by this reference.
Number | Date | Country | |
---|---|---|---|
61784843 | Mar 2013 | US |