The present invention relates to a system for the laying of railroad and tram lines both in tunnels and on the surface. In particular, the proposed system has important evolutions of the anti-vibrating equipment systems with prefabricated floating, and not, basins÷slabs.
Hereinafter in the description, under the term “railroad and tram line” an underground, railroad or tram line will have to be meant indistinctly.
The systems of known art with prefabricated—floating and not, anti-vibrating and not—basins-slabs provide the laying of manufactured products made of ordinary or precompressed concrete with important weight-mass.
These manufactured products are then laid on continuous or discrete supports involving the intrados of the basins-slabs.
In case of discrete supports (used only for the anti-vibrating floating solutions) the laying of the basins-slabs and of the elastomeric discrete supports take place dry without the possibility of altimetric adjustments (needed in relation to the inevitable irregularities in constructing the floor laying). Altimetric (and planimetric) adjustments of the top of rail are then guaranteed in a second phase for the laying—by using laying bedding mortars-grouts—of sleepers (single-block, two-block with or without gauge spacer, made of cap, cao, wood, plastics, iron, equipped, or not, with elastomeric plates of sleeper-pad and rubber boots) housed in compartments existing in extrados to the basins-slabs.
There are even solutions providing the use of direct fastening systems implemented upon laying providing altimetric adjustments by means of laying bedding mortars-grouts placed below the equipment metallic plate (solutions by the way used even for not prefabricated solutions).
In case of continuous supports (mainly used for the not floating and not anti-vibrating solutions) the laying of the basins-slabs (and in case of the elastomeric continuous supports) takes place with the laying of bedding mortars-grouts in opera in intrados to the just mentioned manufactured products, with possibility of altimetric adjustments (needed in relation to the inevitable irregularities in constructing the floor laying). In these cases often one avoids using sleepers, the basins-slabs being equipped in extrados with shapes and inserts for installing the fastening systems of the rails.
Generally these systems are equipped with stopper (with different positions and types) which have the purpose of contrasting with the (both transversal and longitudinal) loads in the track plane. These components—in case of the floating and anti-vibrating solutions—should not prevent the free vertical motion of the basins-slabs (floating freedom of the basins-slabs). The most used position is that in axis to the (central) track, in this case the stopper has not an adequate cross and longitudinal deformability. Less frequently—solutions are used with laying of stopper made of steel-rubber on the flanks of the (side) basins-slabs, which are equipped with adequate vertical, cross and longitudinal deformabilities.
The most significant disadvantages of the systems of known art with the just-described prefabricated basins-slab can be summarized as follows:
EP1783275 refers to a floating slab, having a main body supported—in use—by springs. The slab is floating and therefore is not in contact with the ground and all the load is carried by the springs.
The seats of the springs are cylindrical and passes from the intrados to the extrados. Shims are used for adjusting the height and/or the inclination of the slab with respect to the ground.
WO2011/038612 discloses a suspension system for slabs. According to such disclosure, the slab has peripheral housings wherein suspension members are placed. Shims are used for adjusting the height and/or the inclination of the slab with respect to the ground. The housings are realized at the very extreme periphery of the slab and they are opened at the sides of the slabs. The shims are inserted from side openings of the housings.
The object of the present invention is then to solve the problems not solved so far in the known art, by providing a modular system for the laying of tracks for railroad and tram lines. This is obtained by means of a module as defined in claim 1 and a system as defined in claim 20.
Additional features of the present invention are defined in the depending claims.
The present invention, by overcoming the problems of known art, involves several and evident advantages.
In particular, the present invention allows the laying of tracks for railroad and tram lines.
Conceptually the railroad and tram solutions are wholly analogous to the underground ones for the operating scheme, assembly mode and type of the used components. The sizes of some components, the masses of the massive floating masses and the pitch of the track resting mechanism change which vary from 750 mm for the underground and tram solution up to 600 mm for the railroad solution.
Furthermore, the system according to the present invention can be installed on any subsoil of the railroad and tram line, in terms of lay-out (see straight stretches and curves with possible superelevation of the outer rail) and in terms of infrastructure (see tunnel, cutting, satin, embankment, viaduct).
The system—previous suitable sizes and choices of the single components described hereinafter and both within the floating, and not, solutions—is able to adequate to any operating condition, passing from the solutions for trams and undergrounds (loads per axis 100÷130 kN/axis; speed 60÷120 km/h), to the solutions for railroads at high speed (loads per axis 160÷180 kN/axis; speed 300÷350 km/h), to the solutions for railroad lines existing in Europe (loads per axis up to 250 kN/axis; speed 100÷130 km/h), to the solutions for railroad lines existing outside Europe (loads per axis up to 350 kN/axis; speed 100÷130 km/h).
Other advantages together with the features and the use modes of the present invention will result evident from the following detailed description of preferred embodiments thereof, shown by way of example and not for limitative purpose.
The figures of the enclosed drawings will be referred to, wherein:
By referring to
Such module 100 first of all comprises a supporting slab 101 for the rails 6.
The floating, and not, slab (or basin) 101, preferably prefabricated, is the main component of the system and preferably is made of concrete with loose reinforcement, but under certain conditions precompressed manufactured products, even with pre-tightened/post-tightened reinforcement, are provided.
Advantageously, from an operating point of view, the concrete is cast in the caissons so that while the extrados and the side faces result to be smooth made of concrete with metallic caisson bottom, the intrados is smoothed with plaster trowel.
The slab 101 constitutes the system mass relatively to the main vibrating way of the equipment system.
The slab 101 has a substantially parallelepiped shape and, even if not necessarily, preferably has one or more pairs of housings with prismatic basin 3, implemented in extrados, apt to house respective rail-bearing blocks (30).
The subsequent
The slab 101 comprises at least four peripheral housings 1, (for the railroad six) passing from the extrados to the intrados, apt to house respective adjustable levelling devices.
Preferably, the prefabricated slab 101 provides three (four or more) pairs of housings with prismatic basin 3 and then implements three (four or more) resting members for each rail and represents a repetitive module of the system which, according to the currently used standards, has a length equal to:
Since the cross size preferably is variable from 2,400 mm to 3000 mm in relation to the type of railroad-tram use, the just exposed longitudinal sizes are compatible for conventional transports both on rubber, and on railroad (with reference to a limit shape of 2,500 mm). If there should not be limits linked to overall dimensions for the transportation and one should have available adequate lifting means, the slab could have larger sizes and such housing pairs could be in higher quantity.
The slab 101 then has reduced sizes and relative poor weight so as to allow the transportation, motion and laying thereof with means and ordinary equipment both on the road and on railroad and in the building site. The manufactured product is reliable as to the quality of the implementation, the performances and the duration in time.
However, it is possible varying the geometry of the slab 101 without relevant difficulties or economical burdens, so as to be able to better satisfy specific requirements which are met in the equipment applications (see for example particular geometries such as curved lay-outs, tunnel shapes and viaducts). Thicknesses and mass of the slab 101 in particular are linked to the line features (load per axis, speed of the trains, overall dimensions compatible with the lay-out of the line, lay-out, etc.) determining the use of the single loose reinforcement (more frequent) or the need of using even pre-tightened/post-tightened reinforcements (less frequent, but needed in case of not floating slabs with reduced thicknesses).
As it is visible in
The subsequent
Preferably, each one of the peripheral housings 1 comprises a jacket 110, for example made of PVC/PE or other suitable material such as for example metal, properly anchored to the body of the slab 101 during the prefabrication phase. The jacket 110 then plays even the function of a disposable caisson during the implementation of the manufactured product. By way of example, herein a caisson with circular section is described, with diameter variable between the intrados and the extrados. In particular it is constituted by two cylindrical portions joined therebetween by a truncated conical section. However, it is to be meant that other sections can be provided.
Inside the jacket 110, in particular within the portion at the intrados, a corresponding levelling device 120 could be placed. The levelling device is slidingly assembled, so as to be able to be moved along the longitudinal axis of the prismatic portion.
Advantageously, the levelling member 120 comprises a sliding member 121 and a supporting member 122, overlapped therebetween.
By way of example, the sliding member 121 is made of PVC/PE or other suitable material, whereas the supporting member 122 is made of elastomeric material.
As it will be clearer hereinafter in the description, such levelling devices 120 perform some important functions during the laying and the operation of the system according to the present invention.
During the phase of laying the slab, the levelling devices 120 make possible to adjust the resting of the slab within a margin of at least ±30 mm. This is shown by way of example in
In fact, the levelling device 120 can slide in vertical direction inside the cylindrical jacket and project more or less from the slab with respect to the floor laying, being able then to compensate possible lacks of homogeneity of the floor laying itself.
After having positioned with millimetric precision the slab in planimetric and altimetric terms, the levelling devices 120 are pushed, from the extrados to the slab, as far as they find the contact with the floor laying. At this point from the extrados of the slab bedding mortar/grout 111 can be cast which clogs completely the housing 1 upon the levelling device, by implementing—for each slab stable resting members as they match with the lay-out of the plan rail and the geometrical conditions of the floor laying (see irregularity, not planarity, etc.).
Furthermore, during the operation phase, once the installation is completed, each slab is supported by four or more elastomeric supporting members 122 allowing the manufactured product made of concrete to float, by implementing the “mass÷spring” system, wherein the mass is represented by the slab and the spring is the portion made of elastomer of the supporting members 122.
Advantageously, it can be provided that the levelling devices 120 comprise seals 123 arranged in corresponding seats implemented on the periphery of the sliding members 121. Such seals have two functions:
According to an embodiment, the slab 101 can have a central housing 2, passing from the extrados to the intrados, apt to receive a stabilizing member 200 of the supporting slab 101. A detail view of such housing is shown in
In fact, in the laying, for some modules a stabilizing member 200 of
Number and frequency of the stabilizing members 200 should be determined based upon the specific needs. Experimental and theoretical tests, carried out by considering different underground and railroad trains, have shown that usually it is necessary installing a stabilizing member 200 every ⅔ modules; in particular cases (extremely reduced radii of curvature, considerably variable transit speed of trains in curve, exceptional loads per axis etc.) it can be necessary to install one or more stabilizing members 200 in each module.
By referring to
Advantageously, the housing 2 can provide a not smooth, knurled surface, so as to favour a better anchoring of the jacket 11.
Furthermore, by referring to
The subsequent
Advantageously, the bearing 220 comprises an outer layer 221 made of steel, an intermediate layer 222 made of rubber and an inner layer 223 made of steel incorporating a bushing made of material with low friction coefficient, for example Teflon or an autolubricating sintered material, for example of the type used for grazing bearings.
The grazing deformable bearing 220 is then characterized by axial and cross stiffnesses with different entities calibrated for the specific application, in particular the axial stiffness (operating in vertical direction) is reduced and much smaller than the overall vertical stiffness of the existing elastomeric supporting members 122. Under conditions of correct operation such stiffness, moreover, is not moved since the bearing—in vertical direction—is grazing, that is it can slide in vertical direction with reduced friction coefficients.
On the contrary, the cross stiffness (operating horizontally, both in the rail direction and in orthogonal direction) decidedly is higher than the axial one but of the same order of overall vertical stiffness of the supporting members 122. In this way the fundamental dynamic features are of the same order of magnitude both for the vertical motions of the system and the cross and longitudinal ones.
In case it is requested that the stabilizing member 200 should be stiff in cross direction, that is not equipped with elasticity in the pseudo-horizontal plane, a bearing 200 could be provided, without the intermediate layer 222 made of rubber.
It is to be observed that the great advantage in the infrastructure layout of providing a central stabilizing member 200 with respect to the slab is to be observed, allowed by the use of two-locking sleepers with separated blocks.
The use of such stabilizing member 200—even if it keeps a manufactured product centrally with respect to the basin—allows having fundamental frequencies in the vertical plane and in the cross planes of the same order of magnitude by introducing an anti-vibrating filter effect not only in the vertical direction (component wherein the static and dynamic load are prevailing) but even in the cross and longitudinal directions (even if components wherein the static and dynamic loads are expected to be more reduced).
As already described the slab 101 comprises one or more pairs of housings with prismatic basin 3, implemented in extrados, apt to house respective rail-bearing blocks 30.
By way of example,
The subsequent
According to the present invention, a rail-bearing block 30 is a manufactured product having a main body 31 made of concrete with high concrete class.
Preferably, the manufactured product is cast in the caissons so that whereas the intrados and the side faces are smooth and made of concrete with metal caisson bottom, the intrados is smoothed with plaster trowel.
The main body 31 bears a fastening member 32 for a rail 6. The selection of the type of rails and of the fastening system thereof can take place in a wholly independent way without particular constraints, being able in this sense to consider the specific features of the line as to the uniformity of the equipment components installed along the railroad line.
By way of example, the fastening system types among the most commonly used ones are:
It is then to be meant that the extrados could have a different shape depending upon the fastening type, apart from the presence of inserts for installing spikes or other specific manufactured products of the fastening system.
According to an embodiment of the present invention, each block 30 can include a bottom plate member 35 made of elastomer, placed at the base of the main body.
According to an embodiment each block 30 can further comprise a polymeric outer coating 36 made of rubber.
In particular the elastomeric members and made of rubber allow:
To the purpose of the of the overall performances of the equipment the fastening system type of the rails produces a limited effect (thanks to the presence of the rail-pad elastomeric plate) since such performances substantially depend upon the elastomeric supporting members 122.
Each block 30 is drown in one of the basins 3 by means of bedding mortar, preferably after being equipped with a bottom elastomeric plate 35 and inserted in the polymeric coating boot 36 made of rubber.
The bedding mortar between the slab 101 and the blocks 30 is laid with the rails 6 already constrained on the blocks and correctly positioned with millimetric precision both as to the gauge and to the top of rail. The size of the compartments 3 of the basins is so as to allow an altimetric and planimetric adjustment of the blocks 30 di±20 mm. with respect to the ideal design conditions. Under the lowest laying condition of the block, however a space is left between the lower stretch of the rail and the extrados of the slab so as to allow easily the welding of the rails. In fact, generally in the equipment systems without ballast there are always interferences between the slab and the rails; these interferences are connected to the following operations:
For these reasons, according to an embodiment, the slab 101 of a module according to the present invention can have at least a pair of grooves 4, implemented in extrados, transversally with respect to the direction of positioning the rails 6. Such grooves 4 allow the passage of possible cables below the rails, according to needs.
Furthermore, advantageously, it can be provided that between the extrados of the slab and the foot of the rail a minimum gap, not lower than 35 mm, can be kept. In reality, the gap, in association to the altimetric adjustment of the block results to be 55 mm±20 mm.
By making again reference to
In particular, the supporting slab 101 can have one or more topographic feedback members 5 for positioning the slab itself.
These feedback members 5 for example are placed in extrados to the slab near the four vertexes. They are arranged in a well precise position (both in altimetric and planimetric terms) with respect to the top of rail in the standard configuration (meant without altimetric adjustments) and they are made of metal with feedbacks guaranteeing couplings with millimetric precision. In particular as to the altimetric position they find at a suitable height with respect to the top of rail depending upon the rail type and the fastening systems adopted in the standard configuration for the underground solution such height is 230 mm).
The feedback members are aimed at the two following aspects:
Furthermore, according to additional embodiments, the supporting slab 101 can have one or more seats 9 passing from the extrados to the intrados, for inserting relative lifting jacks of the slab itself.
In particular, such seats 9 can comprise respective bushings (for example M36). Each bushing can be coupled to a tube passing in the thickness of the slab. These elements are aimed at the following two aspects:
The base module of a system according to the invention, as described sofar, provides the use of two-block sleepers with separate rail-bearing blocks, in case equipped with boot made of rubber and elastomeric plate of block-pad and fastening system with one single spring level, as they constitute the most used scheme.
However and with reference to
A first possible classification of the variants provides:
A second possible classification of the variants provides:
A third possible classification of the variants provides:
The railroad sleepers, especially in some of the illustrated variants, can be made of various materials, such as for example wood, plastic or metal.
The solutions provided according to such possible classifications, can even be combined therebetween depending upon the specific needs.
In particular it is observed that:
Hereinafter, some general considerations related to the design choices, to be considered preferred but not limitative, will be shown.
Use of Elastomers with Reduced Dynamic Stiffening
The system according to the invention has been developed by providing the use of elastomeric products prepared with mixtures with reduced mechanical stiffening (ratio between dynamic stiffness and static stiffness).
To this regard it is reminded that whereas for example the metal manufactured products (steel, aluminium, etc.) have wholly negligible dynamic stiffnesses, in case of elastomeric products usually there are not negligible dynamic stiffnesses which can reach even very high values (2.0÷3.0) [(kN/mm)/(kN/mm)].
In this way it has been possible finding a right compromise between the masses of the system and the stiffnesses of the elastomeric products existing in the track system, by observing the importance of using elastomeric products with reduced dynamic stiffening (1.2÷1.5) [(kN/mm)/(kN/mm)] as:
Actually—once having fixed some limits to the settlements of the top of rail, the use of elastomers with reduced dynamic stiffening allows reducing the system mass, which involves in particular the reduction in the overall dimensions of the equipment system and of the geometrical sizes and the weight of the slabs.
Independent Choice of the Features of the Elastomeric Materials
The choice of the features of the elastomeric materials is important for controlling the equipment dynamic behaviour which has two fundamental involvements—in performance terms—:
By fixing as goals:
The features of the elastomeric products are then chosen independently:
The system has been developed by optimizing the features of the elastomeric components present in the system by choosing in particular mixtures characterized by a reduced dynamic stiffening.
It is well known that any elastomeric product has more limited static stiffnesses (mobilized by load applied slowly) than the dynamic stiffnesses (mobilized by loads applied in a quick way):
Whereas for example the metal manufactured products (steel, aluminium, etc.) have values near the unit (that is negligible dynamic stiffenings), in case of elastomeric product there are dynamic stiffenings which can reach even very high values (2.0÷3.0) [(kN/mm)/(kN/mm)] (that is absolutely not negligible dynamic stiffenings in design and performance terms of the equipment systems).
It is necessary observing that whereas the static behaviours of the elastomeric manufactured products determines the equipment response to the (almost-static) gravitational loads moving along the track, the dynamic behaviour of the elastomeric manufactured products determines the equipment response to the dynamic loads.
In substance, whereas the settlements of the top of rail are determined by the static behaviour of the elastomeric manufactured products (mobilized the static stiffness), the natural frequencies of the system are determined by the dynamic behaviour of the elastomeric manufactured products (mobilized the dynamic stiffness).
It is to be reminded that the equipment dynamic behaviour is characterized by two main frequencies; in particular:
Substantially characterized by the mass of the slabs and by the elasticity of the elastomeric manufactured products existing in the component made of elastomer÷PVC/PE of the levelling devices. The most significative parameter is the natural frequency of the floating system or primary natural frequency (fo) characterizing the anti-vibrating filtering effect of the floating system.
Substantially characterized by the mass of rails and the rail-bearing extractable blocks and by the elasticity of the elastomeric manufactured products of block-pad.
The most significative parameter is the natural frequency of the rails or secondary natural frequency (fr) characterizing the second resonance of the equipment system.
Several studies lead back to the value of this dynamic parameter (fr), the evaluation of the potential formation of moiré effects on the track rolling plane due to dynamic micro-slidings wheel÷rail connected to the dynamic interaction equipment÷vehicle. When the natural frequency of the rails (fr) places in the field of the natural frequencies in the rooms of the vehicles of the underground/railroad trains, potentially important moiré phenomena are expected.
The planning of the anti-vibrating equipment systems is based upon the detection of the right balance between the elasticity of the elastomeric components and the masses existing in the track system, by considering both the “dynamic performances” and the “static performances”.
In fact whereas the “dynamic performances” (values of the fundamental frequencies fo and fr) of the system improve the more the products are highly deformable, the “static performances” (see the settlements of the top of rail) of the system improve the more the products are stiff.
Therefore—in relation to what just illustrated—it appears important to use elastomeric products with limited dynamic stiffening (1.25÷1.50) [(kN/mm)/(kN/mm)] as:
Hereinafter, by way of example, the modes for laying a system according to the present invention will be described, which then comprises a plurality of modules of the type described sofar.
Such description will still help in the comprehension of the system, of its components and the design choices to be performed.
The preferred laying procedure is the following:
A) Based upon the design of the railroad layout, tracing the positions of the slabs and the positions of the stabilizing members on the floor laying;
B) Altimetric topographic checks of the heights with respect to the layout design; the following situations might happen:
C) Installation of the stabilizing members: vertical core drillings in the floor laying for the seats of the worked-out bars, laying of the same, positioning of the complete manufactured product and clamping of the worked-out bars.
D) Positioning of the equipped slabs in the intrados of the levelling devices kept in position by the annular seals existing in the portion made of PVC/PE of the sliding members of the levelling devices.
E) Planimetric millimetric adjustment (transversal, longitudinal and rotation around the vertical axis) of the equipped slabs in extrados of the topographic feedback members at suitable height from the top of rail. The procedure is performed by acting with horizontal mechanical adjusting jacks, which find easy feedback upon laying on the same infrastructure.
F) Altimetric millimetric adjustment of the equipped slabs in extrados of the topographic feedback members at suitable height from the top of rail. The procedure is performed by acting with the jacks implemented with the bars inserted into the bushings existing in extrados of the slabs.
G) By acting in extrados it is provided:
H) Installation of the rails and the fastening systems.
I) In the case B.1) one passes directly to the item M) [by jumping the items J), K) e L)].
In the case B.2) one proceeds with the subsequent item J).
J) Planar-altimetric millimetric adjustment of the rails (and of the rail-bearing block) by acting with mechanical vertical/horizontal jacks and adjusting templates which can be easily installed on the extrados of the slabs.
K) Laying cast of the finishing (bedding and grouting) mortar, by acting in extrados to the slab, by clogging the containment niches of the rail-bearing blocks.
L) Subsequently to the phase of hardening the bedding mortar, disassembly/recovery of the vertical/horizontal jacks and adjusting templates for laying the rail-bearing blocks.
M) Topographic check with millimetric precision of the track geometry, with respect to the layout of the design track.
N) At last, possible laying imperfections of the top of rail (not expected in theoretical terms) can be subsequently corrected in case of slabs equipped with fastening systems adjustable in altimetric and planimetric sense.
From what described sofar, the evident advantages can be obtained in terms of laying flexibility and simplicity.
In particular, one of the most relevant aspects appears to be that of having inserted an additional level of altimetric adjustment of the top of rail.
In fact, to the adjusting level related to the laying of the rail-bearing block (see the finishing mortar for bedding and grouting between slab and block), a second adjusting level has been added related to the laying of the slab (see the finishing mortar due to clogging between levelling devices and slab).
In summary, then, according to the embodiment, the following altimetric adjustments can be provided:
Total altimetric adjustment of ±50 mm.
The laying strategies are then two:
The invention is important if one considers that the existing equipment solutions are able to allow adjustments lower than ±20 mm; the carrying out of the floor laying is civil work by building company which finds difficult to guarantee precisions lower than ±20 mm, with consequent presence of a high number of not conformity along the layout to be repaired with not negligible costs and time; the carrying out of the floor laying with higher precisions (from ±30 mm to ±50 mm) has not great difficulties, with consequent presence of a really reduced number of not conformity along the layout to be repaired; by excluding for a high number of situations (case of tolerances of the floor laying lower than ±30 mm) bedding interventions of the laying rail-bearing blocks have positive influences on construction time and costs, in fact keying, grouting and bedding at works of the blocks have important operating advantages.
The present invention has been so far described by referring to preferred embodiments thereof. It is to be meant that each one of the technical solutions implemented in the preferred embodiments herein described by way of example, could be combined advantageously differently therebetween, to create other embodiments belonging to the same inventive core and however within the protection scope of the here below reported claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IT2015/000029 | 2/10/2015 | WO | 00 |