This invention relates to transverse flux motors in which the output torque can be adjusted by stacking rotor/stator modules to fit the needs of applications, such as elevators, and optionally having an integrated brake.
As an example of art needful of the present invention, elevator machines represent a major portion of the material costs of an elevator. Elevator machines require slow rotating speeds and must provide decades of maintenance-free service. For low noise, smooth operation, low cost, and a compact drive system, gearing is to be avoided if possible. One important factor in motor selection is the amount of torque output per unit of active material, either mass or volume, including the core steel, the conductor wire, and the permanent magnets. Maximum torque requirements for an elevator machine are determined by the maximum imbalance, which is generally about one-half of rated load plus maximum cable mass mismatch, together with the sheave diameter and roping arrangement (1:1, 2:1, etc.).
Conventional, rotating field electric machines have phase windings integrated into one core structure. For larger torque capability, a longer core of stacked laminations is required, with different phase windings, which in turn require different winding fixtures and other manufacturing equipment. The stator of conventional motors have end turns which extend beyond the useful flux-producing portion of the motor. These coil extensions render it difficult to achieve compact motor/sheave combinations, and to integrate brakes or other auxiliary structures with the motors.
To reduce the number of motor models required for a product line, some of the elevator models that share a motor type with other elevator models are oversized for their torque requirements. Having a large number of motors without common parts raises the cost of materials, set-up, manufacture, and warehousing spare parts.
Objects of the invention include: improved motors for elevators; motors that provide high torque at low speed; motors in which torque can be increased simply by adding modular phases; motors in which the torque can be increased without requiring a total change of the windings; motors with high efficiency and good power factor; motors which have a high volumetric torque density; motors with relatively shorter assemblies with no coil end turns, and thus lower loses; motors having simple stator windings; motors which use significantly less copper and require less manufacturing labor than similarly rated permanent magnet brushless motors; and motors which can be built with identical modules to permit small steps in torque ratings using identical parts.
According to the present invention, an electric motor, suitable for driving elevator sheaves, consists of rotor/stator modules, one module per phase of the driving current, the motors being built up of identical rotor/stator modules, one or more modules per phase, in order to select the proper torque rating of the motor.
According further to the present invention, a brake may be disposed integrally, on the same shaft and contiguous to a rotor/stator module of a transverse flux motor.
A motor according to the present invention provides higher torque per unit volume than a conventional motor, has practically constant efficiency for constant stator torque and speed, has improved power factor (due to the absence of end-turn leakage flux), and is capable of a power factor which increases with the number of poles. A motor according to the invention has practically constant efficiency in ranges from about 50% to about 120% of the rated shaft torque at rated operating speed. The invention has shorter ferromagnetic core and shaft and utilizes 30% less copper in conductors and ferromagnetic core volume than comparable permanent magnet brushless motors, and has no coil end turns, thus producing a shorter, lighter motor. The invention provides motors having only a single, annular coil per phase regardless of the number of poles.
Other objects, features and advantages of the present invention will become more apparent in the light of the following detailed description of exemplary embodiments thereof, as illustrated in the accompanying drawing.
Referring to
Referring to
A brake disc 43 is engaged to a hole 44 in the shaft 21 by a pin 46 on which the disc 43 may slide through an elongated slot 47. A brake assembly 49 includes an annular frame 50 having an annular groove 51 for brake releasing coils, and a land 52 against which stacked wave springs 53 will press so as to engage the brake when the brake releasing coil is disenergized. A return spring 56 will cause the brake disc to assume a neutral position where it will neither contact the right end plate 14 nor the frame 50 when the brake releasing coil is energized. This is described in detail hereinafter with respect to
Referring to
The rotor of each rotor/stator module 28-30 consists of an annular soft magnetic base portion 71 with a hole 72 for the shaft 21. On the surface of the base portion 71, two rows of hard permanent magnets 74-77, which may be NdFeB, are separated by a non-magnetic spacer 78 (but there could be air between the two rows of magnets 74-77). The south pole 74 in one row of magnets is in axial alignment with a north pole 76 in the other row of magnets, and the north pole 75 in the one row of magnets is in axial alignment with a south pole 77 in the other row of magnets. Thus, for each pole 67 there are a pair of magnets 74, 75. Alternative configurations may have variations in magnet placement, size, shape and consistency. The requirement is to have an alternating field, multiple magnets, or multi-poled segments. The magnets 75-77 are shown in
Referring to
Referring to
The wave springs 53 may be of such size and number as is determined necessary to provide the desired brake torque. They may for instance comprise crest-to-crest springs as shown in the web site www.smalley.com/spring and provided by the Smalley Steel Ring Company of Lake Zurich, Ill., USA.
As seen in
Instead of using the rotor/stator arrangement described with respect to
The manner in which the modular design of the present invention may be utilized in order to properly size motors for a variety of configurations utilizing the same rotor/stator modules is illustrated in
Illustrated in
In
Similarly, modules capable of producing more or less torque per module could be arranged with as little as a pair of modules being driven by two-phase power, or six or more phases driven by three- or six- or more-phase power. A three-phase drive, for instance, can drive a motor consisting of 3N stator modules where N may be 1-4 or some other positive small integer, where similar modules share the power from the three-phase drive.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US03/17057 | 5/27/2003 | WO | 10/4/2005 |